Intracellular Magnetic Manipulations

Optimized tweezers enable precise 3-D manipulations of a cell’s organelles.

Written byRuth Williams
| 2 min read
magnetic tweezers

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, Kkolosov

Poking and prodding a cell’s innards can reveal a great deal about its properties and functions. But the tools available for such detailed manipulations have their limitations, being either invasive or insufficiently powerful. Noninvasive approaches such as optical or acoustic tweezers work well at power levels suitable for pushing molecules around, but can cause heat damage or excessive agitation when delivering enough energy to move organelles.

Magnetic tweezers—which use microscope-mounted magnets to remotely move a magnetic object, such as a bead, introduced into a tissue or cell—avoid the problems of damage at higher power and have “always had great promise,” says Dyche Mullins of the University of California, San Francisco. However, they have had their own difficulties. For example, while a magnetic object several microns in size can be used to push and prod the exteriors of whole cells or isolated organelles, explains Mullins, intracellular manipulations ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

living with bacteria 2019 the scientist june issue
June 2019

Living with Bacteria

Can pathogens be converted to commensals?

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo