Menu

Neural Connectome Method Uses mRNA Barcodes

Researchers swap microscopy for RNA sequencing to track neural paths in the mouse brain.  

Nov 1, 2016
Ruth Williams

FOLLOW THE mRNA: To determine where in the mouse brain individual neurons have axon terminals, researchers inject a library of viral vectors in the vicinity of cell bodies. The viruses contain plasmids each encoding a unique RNA barcode and a presynaptic protein called MAPP-nλ that will shuttle the barcoded mRNA to the ends of the axon. Typically, each cell takes up only one virus, giving that cell an RNA identifier. Dissecting brain regions and sequencing the RNAs reveals which cells project where.© GEORGE RETSECK

Several ambitious brain connectome projects are underway to diagram the wiring of animals’ most complicated organ. For the most part, neural cartographers rely on microscopy, but tracing numerous projections across the large volumes of the brain is “extremely painstaking and slow,” says Thomas Mrsic-Flogel of the University of Basel.  

Inspired by recent advances in sequencing technology, Tony Zador of Cold Spring Harbor Laboratory had an idea: “If there was a way to convert the mapping problem into one of sequencing, it would be a [big] win in terms of throughput and cost.” Now, he and his colleagues have done just that.

To map neurons by sequencing, Zador’s team injects a mixture of approximately 106  viruses—each bearing a genetic sequence encoding a unique mRNA barcode—into mouse brain regions. By and large, each neuron becomes infected with one virus, and therefore receives just one barcode identifier. Two days later, once the mRNAs have travelled the lengths of the axons (guided by engineered presynaptic proteins), injection sites and target brain regions are dissected, and the RNA is extracted and sequenced. RNAs at the target sites matching those from the injection site thus represent individual neuron projections.

Zador and colleagues used the technique, called MAP-seq, to examine neuron projections into the cortex from the locus coeruleus—a site in the brainstem that is the sole source of the neurotransmitter noradrenaline for the neocortex. The team found that while some neurons branched out to multiple regions of the cortex, others connected with just one or two sites.

The experiment served as “a proof of principle,” says Zador, who now plans to perform hundreds of injections in a single mouse cortex to examine connectivity from multiple regions at once. This has the potential to “yield a hugely rich anatomical data set,” Mrsic-Flogel says. (Neuron, 91:975–87, 2016) 

MAPPING TECHNIQUE CELL LABELING TARGET SITE ANALYSIS SPATIAL RESOLUTION THROUGHPUT
Anterograde tracing One or a few cells per brain are injected with the same fluorescent label (using additional colors allows tracking of greater numbers of cells). Illuminated axon
branches are observed
with a microscope.
High. The precise locations of projections can be determined
down to the resolution limit
of the microscope.
Very low. It can take more than a week of intensive microscopy to track a single neuron’s projections.
MAP-seq Unique mRNA barcodes label individual neurons. Tissue is dissected into tiny sections. RNA is extracted and sequenced. Limited by the dissection method. Cryostat sections were 300?μm thick in this study, but laser microdissection could provide thinner pieces of tissue. High. Many thousands of individual neurons can be mapped in one week. Multiple injection sites would increase this number further.

 

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.