Menu

Precision Epigenetics

Visualizing specific epigenetic marks at single gene loci is now possible in individual cells.

Sep 1, 2013
Ruth Williams

THE TECHNIQUE: A gene of interest is hybridized with a biotin-tagged DNA probe (red). Next, an anti-biotin antibody (pink) and an antibody (blue) recognizing an epigenetic mark—e.g., histone H3 methylation—are applied. These antibodies are then each tagged with PLA antibodies (orange and yellow). If the biotin and epigenetic mark are in close proximity, the two PLA antibodies will interact and create a signal detectable with a fluorescent DNA probe.GEORGE RETSECKTHE PICTURE: Red fluorescent signals (white arrows) appear only in nuclei (blue) where the biotinylated gene probe and epigenetic mark are in close proximity.IMAGE COURTESY OF DELPHINE GOMEZ

Techniques exist to visualize specific gene loci within tissue sections. And separate test-tube experiments exist to determine those genes’ epigenetic modifications. Now Gary Owens, a professor of cardiovascular research at the University of Virginia, has devised a new technique that enables gene visualization and epigenetic analysis at the same time.

“The dirty little secret of epigenetics research is that we report quantitative differences from a cell population,” says Andrew Feinberg, a professor of molecular medicine at Johns Hopkins University who was not involved in the study. “If you really want to understand mechanisms, you also need to measure individual cells.”

To achieve single-cell precision, Owens modified an existing technique called a proximity ligation assay (PLA) that is used to determine if two proteins are in close proximity within a cell. Antibodies to the two proteins are tagged with overlapping complementary single strands of DNA. If the two strands are close together, they can be ligated to form an amplifiable circular DNA molecule that is detectable with a fluorescently labeled DNA probe.

Owens simply combined the method with in situ hybridization (ISH) to reveal whether a specific gene was in close proximity to a particular epigenetic mark—for example, methylation of lysine 4 in histone H3. First he hybridized his gene of interest with a DNA probe tagged with biotin. He then used an anti-biotin antibody tagged with one of the single-stranded DNAs for PLA. The other PLA tag was attached to the antibody recognizing the particular epigenetic mark.

The concept of combining ISH with PLA “was a real technical tour de force,” says Feinberg.

At present, Owens’s PLA-ISH technique allows examination of one type of epigenetic mark at one gene locus per experiment. But he says that with the development of further PLA reagents, it should be possible to look at multiple loci, epigenetic marks, and even transcription factors at the same time. (Nat Methods, 10:171-77, 2013)

THE METHOD HOW IT WORKS ADVANTAGES DISADVANTAGES
Chromatin immunoprecipitation (ChIP) DNA cross-linked to chromatin is sheared into short sections. Antibodies recognizing epigenetic marks precipitate the associated DNA segments, which can then be sequenced. Robust, well-established Results are an average from pooled cells.
 
PLA-ISH A gene of interest is tagged with single stranded DNA (ssDNA), and modified histones are tagged with a complementary strand of ssDNA. If the gene and modified histones are in close proximity, the ssDNAs anneal and are detected with a fluorescent probe. Precise detection of specific proteins at specific gene loci in tissue sections Currently limited to one color/interaction type per experiment

 

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Preparing Cell Or Tissue Lysates For ELISA Kits

Preparing Cell Or Tissue Lysates For ELISA Kits

RayBiotech manufactures over 2,000 high fully validated, GMP-compliant ELISA kits. In this blog post we explain how to prepare cell or tissue lysates for ELISA Kits.

Norgen Biotek Achieves Illumina Propel Certification as a Service Provider for Next Generation Sequencing

Norgen Biotek Achieves Illumina Propel Certification as a Service Provider for Next Generation Sequencing

Norgen Biotek Corp., an innovative privately held Canadian biotechnology company focusing primarily on nucleic acid and protein stabilization and purification, as well as providing high quality services to the scientific community, today announced that it has become Propel-Certified through Illumina as a Next Generation Sequencing (NGS) service provider.

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.