Menu

Infographic: Evolving Virulence

Tracking the myxoma virus in the wild rabbit populations of Australia has yielded insight into how pathogens and their hosts evolve.

Sep 30, 2017
Andrew F. Read and Peter J. Kerr

When a pathogen jumps species, it is often highly lethal in its new host. But a quick kill does not make for continued transmission; the host must survive long enough to pass the pathogen on to additional victims. Thus, under natural conditions, a newly emergent, highly lethal pathogen that kills very rapidly is expected to evolve lower virulence. At the same time, however, the host species is evolving resistance to the infection, which then provides an environment for increasing pathogen virulence. Could humans be creating a similar environment by vaccinating or breeding our farm animals to resist disease?

Wild rabbit populations in Australia declined dramatically in the early 1950s after the release of the myxoma virus, which caused a fatal disease called myxomatosis. Slowly, the populations started to rebound, though they never fully recovered.

To track the myxoma virus (MYXV) as it devastated the invasive rabbit populations of Australia, researchers conducted what are known as common garden experiments, testing the effects of the evolving viral strains on laboratory rabbits, as well as the effects of a standard virus on different samples of rabbits in the wild over time.

When MYXV first infected the Australian rabbit population in 1950, it caused a severe disease known as myxomatosis that killed more than 99 percent of its victims. Natural selection favored strains with reduced lethality and therefore longer infectious periods. Within a few years, circulating viruses had fatality rates between 95 percent and less than 50 percent.

Meanwhile, the rabbits were evolving resistance to the viral infection, though the protection was not complete, allowing the virus to continue evolving.

Host resistance likely decreased the virus’s transmission rate, thus setting the stage for the selection of more virulent strains. Sometime between the mid-1970s and the early 1980s, strains arose that massively suppressed the cellular inflammatory response of laboratory rabbits. In wild rabbits, the combination of host resistance and increased viral virulence resulted in typical myxomatosis presentation, but when naive rabbits were exposed to the new viral strains, bacterial infections bloomed in their immunosuppressed bodies, killing nearly all of the hosts before they developed the classic disease.

Read the full story.

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.