Menu

Infographic: Getting Synapses Ready to Fire

A new study reveals more about the role of specialized Schwann cells at junctions between neurons and muscle cells.

May 1, 2018
Ashley Yeager

© KIMBERLY BATTISTA

MUSCLE HUSTLE

After stimulation with an action potential (1), the synaptic terminal of a motor neuron releases acetylcholine and ATP. (2) Acetylcholine activates receptors in the muscle, which spurs voltage-gated sodium channels to open, triggering an action potential in the muscle, which contracts. At the same time, ATP or ADP stimulates P2Y1 receptors (3), which causes calcium ions to be released from the endoplasmic reticulum of the terminal/perisynaptic Schwann cell (TPSC)  (4). In response, perisynaptic potassium ions (K+) produced by the muscle and neuronal cells move into the TPSC  (5). Regulation of perisynaptic potassium ions by TPSCs is thought to reduce the ions’ ability to inactivate voltage-gated sodium channels during repeated firing, thus reducing muscle fatigue.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening