Menu

Infographic: The Brain on Psychedelics

Understanding how hallucinogenic drugs affect different neural networks could shed light on their therapeutic potential.

Aug 31, 2017
Diana Kwon

© CATHERINE DELPHIA

Key brain areas involved in the effects of psychedelic drugs are located in the default mode network (DMN), which is more active at rest than when attention is focused on the external environment. Neuroscientists first discovered this network while scanning participants’ brains at rest: rather than a decrease in activity across the brain, they found that activity in some regions was actually higher when people were not engaged in a goal-directed task. Over the years, researchers have linked the DMN to a variety of functions, including autobiographical recollection, mind wandering, and processing self-related information.

Key hubs of the DMN include the posterior cingulate cortex (PCC), the medial prefrontal cortex (mPFC), and the posterior inferior parietal lobule (pIPL). Through neuroimaging, researchers have discovered that psychedelic drug use decreases activity in some of these brain areas, and also reduces connectivity within the DMN.

Neuroimaging studies have also shown that connectivity between brain networks is increased when psychedelics are administered. For example, the DMN; the salience network, which helps identify behaviorally relevant information; and the frontoparietal network, known to be involved in attentional control and conscious awareness, all show stronger connections to each other. Researchers believe that this increased crosstalk throughout the brain may play a key role in the drugs’ effects.

© CATHERINE DELPHIA

Psychedelics’ Anti-inflammatory Effects

Scientists have discovered that a number of psychedelics can reduce inflammation throughout the body. Animal studies with one of these drugs, DOI, which is an especially potent anti-inflammatory compound, are starting to reveal the mechanism behind these effects. According to one hypothesis, DOI binds to and activates the serotonin 2A (5-HT2A) receptor to recruit protein kinase C (PKC). This is thought to block the downstream effects of the binding of tumor necrosis factor-alpha (TNF-α) to its receptor (TNFR), which is known to initiate a signaling cascade that promotes the transcription of proinflammatory genes.

© CATHERINE DELPHIA
Read the full story.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening