Menu

Infographic: Two Pain Paths Diverge in the Body

The acute pain that results from injury or disease is very different from chronic pain.

Dec 31, 2017
Mark R. Hutchinson

© THOM GRAVES

Persistent pain continues even after the damage is resolved, or in some cases, in the absence of an acute injury in the first place. The difference between this and acute pain, also known as nociception, researchers are learning, comes down to the neural mechanisms that trigger these distinct signals in the brain.

Nociception
Acute pain is caused by the activation of nociceptive sensory neurons in the periphery. These neurons trigger the firing of a series of connected somatosensory neurons up the spinal cord and into the brain, transferring information about the intensity and duration of the painful stimulus.

Persistent pain
Pain that persists long after or in the absence of injury can result from the misfiring of the normal nociceptive pathway. This can be triggered in the periphery—sometimes arising from a neutral stimulus, such as light touch—with the signal becoming amplified on its way to the brain. Alternatively, persistent pain can arise in the absence of any stimulus with the firing of neurons in spinal cord or brain circuits responsible for pain processing. Immune-like cells of the central nervous system known as glia are now recognized to contribute to the aberrant neural activation that causes persistent pain.

Glia’s Role in Persistent Pain

Microglia release cytokines and other proinflammatory molecules, as well as detect signaling factors from peripheral immune cells (1). Together, these signals can enhance the release of excitatory neurotransmitters from pain-transmitting neurons, leading to increased neuronal firing (2). Normally, when glial cells called astrocytes detect an increase in the extracellular concentrations of neurotransmitters, their cellular processes called endfeet begin to take up greater amounts of the molecules in an attempt to bring the hyperactive synapses under control (3). In persistent pain, these cells contain fewer of the molecular transporters responsible for this neurotransmitter removal. Glial cytokines and chemokines can also cause greater numbers of receptors to be displayed on the postsynaptic terminal of the pain-transmitting synapse, further promoting neuroexcitability (4).

© THOM GRAVES. REDRAWN FROM FIGURE 1 IN BIOL PSYCHIATRY, 65:732-741, 2009.

Read the full story.

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing
Bio-Rad Introduces Isotype-Specific Secondary Antibodies
Bio-Rad Introduces Isotype-Specific Secondary Antibodies
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of its isotype-specific secondary antibodies. This new range of recombinant monoclonal antibodies, directed against the three main mouse isotypes: IgG1, IgG2a, and IgG2b, offer improved signal detection and specificity in imaging, ELISA, flow cytometry, and western blotting.