Menu

Making the Rounds

Circular RNA biogenesis occurs when RNA fragments are bent into closed loops of one or more exons and/or introns.

Jul 16, 2017
Catherine Offord

Circular RNAs often form as the pre-mRNA molecule is processed into its final transcript via splicing, in which introns are removed and exons are linked together. Most circular RNAs are thought to be formed by a process called backsplicing, which joins one end of an exon to the other, or to an upstream exon, forming a circle. Researchers have recently published several models—not all of them necessarily mutually exclusive—to explain how different parts of the RNA molecule are brought into close proximity, encouraging backsplicing and turning a linear sequence into circular RNA.

THE SCIENTIST STAFFTHE SCIENTIST STAFFIn a general backsplicing model, proteins assemble to form the spliceosome that processes transcribed RNA. But instead of splicing exons together in a linear sequence, they join the end of one exon to the beginning of the same exon or to an upstream exon. Below are three mechanisms that can drive this backsplicing

INTRON-PAIRING-DRIVEN CIRCULARIZATION

Complementary base pairs formed between long intronic sequences on different parts of the transcript bring together different splice sites on an RNA molecule, promoting backsplicing.

LARIAT-DRIVEN CIRCULARIZATION

Splicing proteins “skip” some exons, creating an exon-containing lariat—a lasso-shaped structure that introns frequently form during standard splicing. This lariat can be excised and formed into a circle while the leftover RNA forms a linear transcript that lacks the skipped exons.

PROTEIN FACTOR–MEDIATED CIRCULARIZATION

RNA-binding proteins (RBPs) such as Quaking bind to sequences on either side of exons and pull these sequences into proximity with each other, forming circles even in transcripts that are normally spliced in a linear fashion.

THE SCIENTIST STAFF

Read the full story.

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!