Menu

The Fatty Acid–Ketone Switch

In failing hearts, cardiomyocytes change their fuel preference.

Jun 1, 2016
Amanda B. Keener

Healthy cardiomyocytes (left panel) mainly use fatty acids as their energy source. To produce ATP, fatty acids are first converted into acylcarnitines, which are converted back to fatty-acyl-CoA and enter the β-oxidation cycle inside mitochondria. The resulting acetyl-CoAs then enter the citric acid cycle. In a mouse model of heart failure and in failing human hearts (right panel), cardiomyocytes depend more on ketones for energy. The ketone βOHB enters the mitochondrion where the enzyme BDH1 converts it into acetoacetate, whose products serve as substrates for the citric acid cycle. Both mice and humans with heart failure experience increased serum levels of βOHB, but in human cells βOHB and acylcarnitine levels go down. In mice, heart failure reduces the abundance of proteins involved in fatty acid oxidation. Both alterations suggest ketones are preferred over fatty acids in failing hearts.

THE SCIENTIST STAFF

Read the full story.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!