Mutagens and Multivitamins

Not one to shy away from controversy, Bruce Ames has pitted himself against industry groups, environmentalists, and his peers through his work identifying DNA mutagens. And he’s not done yet.

Written byMegan Scudellari
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

BRUCE N. AMESSenior Scientist Children’s Hospital Oakland Research Institute Oakland, California Professor Emeritus University of California, Berkeley© PAUL SIMCOCK PHOTOGRAPHYOn an otherwise ordinary day in 1964, Bruce Ames picked up a box of potato chips and read the list of ingredients. A biochemist at the National Institutes of Health (NIH) in Bethesda, Maryland, Ames spent his days studying mutations in strains of Salmonella, so it wasn’t unusual that he began to wonder if any of the preservatives or chemicals on that long list of ingredients might mutate DNA. Ames decided to use his Salmonella to try to detect genetic damage caused by chemicals. “I figured the world needed some quick, easy test to detect mutagens,” says Ames.

Ames had hundreds of strains of S. typhimurium with mutations in the genes required to produce histidine, a standard amino acid for making proteins. These strains could not grow without the addition of histidine. When millions of bacteria were placed in media lacking the amino acid, however, a few would spontaneously mutate, produce histidine again, and survive as a colony. Ames figured if he added a chemical, such as a potato-chip preservative, to the Salmonella strains, and the chemical increased the number of surviving colonies, it was a mutagen.

“Nutrition is a muddy field, but I like getting into muddy fields.”

Ames began tinkering with the test as a hobby. Then, in 1967, when he moved to the University of California, Berkeley, he got some ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH