Menu

New Pesticide Affects Bumblebee Reproduction

Sulfoxaflor, an alternative insect-killer to older chemicals that decimate pollinators, turns out to kneecap colonies.

Aug 15, 2018
Shawna Williams

ABOVE: ISTOCK, ALLE12

Sulfoximines, a class of pesticides now being adopted worldwide as a replacement for compounds known to harm pollinators, themselves diminish queen bumblebees’ reproductive capacity, a new study finds. In a report published today (August 15) in Nature, researchers report that colonies founded by queens exposed to small amounts of sulfoxaflor, an insecticide that kills aphids, psyllids, and other pests, produce 54 percent fewer male drones than do unexposed colonies—and no new queen bees at all.

“Our study highlights that stressors that do not directly kill bees can still have damaging effects further down the line, because the health of the colony depends on the health of its workforce,” coauthor Elli Leadbeater of Royal Holloway University of London tells The Irish News.

Leadbeater and her coauthors captured wild queen bumblebees (Bombus terrestris) and fed them and their new colonies either a control sugar solution or one spiked with five parts per billion of sulfoxaflor—a level they based on estimates of what the insects would be exposed to in sprayed fields. After two weeks, they placed the colonies in a field, but continued monitoring them. A few weeks later, there were detectable differences in the numbers of worker bees in the exposed and unexposed colonies. And while 3 of the 26 control colonies produced new queen bees during the experiment, none of the exposed colonies yielded new queens.

See “Field Studies Confirm Neonicotinoids’ Harm to Bees

Unlike neonicotinoids, pesticides that have been found to impair pollen foraging, sulfoxaflor did not appear to impede bumblebees’ ability to get food, Nigel Raine of the University of Guelph writes in an accompanying commentary. “Perhaps early-stage colony growth and subsequent reproductive output were affected by sulfoxaflor toxicity to developing larvae, or by some other indirect mechanism—either way, the timing of declines in colony growth rate suggests that chronic sublethal stress at an early stage resulted in substantially reduced colony reproduction.”

July 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 today, which includes a broad range of improvements in for analysis of DNA, RNA and protein sequence data, as well as new advancements for predicting and analyzing protein structures. 
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences, a division of Chiral Technologies, Inc and worldwide leader in next generation sequencing (NGS) target enrichment, announces a partnership with Curio Genomics for bioinformatics analysis of the wheat genome.
IDT and Washington University join forces to increase access to the latest NGS technologies
IDT and Washington University join forces to increase access to the latest NGS technologies
As part of its commitment to advocate for the genomics age, Integrated DNA Technologies (IDT) aims to lower the barriers to access the latest NGS technologies.
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) July 15, 2019 announced the launch of its Bio-Plex Pro Human Immunotherapy Panel 20-plex, a multiplex immunoassay that offers a targeted approach for Immunotherapy Research.