Menu

Amazonian Fish Genome Challenges Long-Held Assumptions About Asexual Reproduction

Poecilia formosa, an all-female fish species, has a surprisingly robust genome. 

Feb 15, 2018
Jim Daley

An Amazon molly, Poecilia formosaMANFRED SCHARTL

The Amazon molly (Poecilia formosa) is a species of freshwater fish native to Mexico and the southwestern United States. The fish—like their namesake, the mythical Amazonian warriors—are all female. They reproduce asexually, a process long thought to be detrimental to a species’s long-term survival. But new findings, published Monday (February 12) in Nature Ecology & Evolution, reveal that the molly’s genome is surprisingly robust.

“The genetic health of this asexual vertebrate is surprising given the accumulation of genomic damage that is expected to follow from asexual reproduction,” wrote Pedram Samani of the Georgia Institute of Technology and Max Reuter of University College London in an accompanying editorial. “The main finding of the paper is that the species is in remarkably good genomic health.” Samani and Reuter were not involved in the study.

Amazon mollies reproduce by gynogenesis, a process through which females mate with males of a closely related species. The male’s sperm cells activate the female’s ovum, which promptly destroys all of the male’s genetic material before the female begins the process of clonal reproduction.

Evolutionary theory predicts that asexually reproducing species would be up against several disadvantages, such as a build-up of irreversible deleterious mutations. Selection should be more effective “with sex than without,” the researchers write.

But when the researchers compared the genome of the Amazon molly to two similar species (P. latipinna and P. Mexicana), they were surprised to find the molly had “unique genetic variability” and that it was still evolving. “Unexpectedly, we found no widespread signs of genomic decay,” the researchers write. Instead, they discovered substantial genetic variation within the clonal population. The mollies also appeared to retain genes involved in functions that females don’t need, such as spermatogenesis.

Perhaps most strikingly, they found that the Amazon molly also has astronomical levels of genetic diversity within its genome, also known as heterozygosity. Believed to be a hybrid species from distantly related Atlantic mollies and Sailfin mollies, the Amazon molly’s heterozygosity is 10 times that of its sexually reproducing parental species. “These characteristics seem to be a principal reason for the unpredicted fitness of this asexual vertebrate,” the researchers write. Their analysis “may change our view on asexual organisms that practice gynogenesis.”

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!