Menu

Amazonian Fish Genome Challenges Long-Held Assumptions About Asexual Reproduction

Poecilia formosa, an all-female fish species, has a surprisingly robust genome. 

Feb 15, 2018
Jim Daley

An Amazon molly, Poecilia formosaMANFRED SCHARTL

The Amazon molly (Poecilia formosa) is a species of freshwater fish native to Mexico and the southwestern United States. The fish—like their namesake, the mythical Amazonian warriors—are all female. They reproduce asexually, a process long thought to be detrimental to a species’s long-term survival. But new findings, published Monday (February 12) in Nature Ecology & Evolution, reveal that the molly’s genome is surprisingly robust.

“The genetic health of this asexual vertebrate is surprising given the accumulation of genomic damage that is expected to follow from asexual reproduction,” wrote Pedram Samani of the Georgia Institute of Technology and Max Reuter of University College London in an accompanying editorial. “The main finding of the paper is that the species is in remarkably good genomic health.” Samani and Reuter were not involved in the study.

Amazon mollies reproduce by gynogenesis, a process through which females mate with males of a closely related species. The male’s sperm cells activate the female’s ovum, which promptly destroys all of the male’s genetic material before the female begins the process of clonal reproduction.

Evolutionary theory predicts that asexually reproducing species would be up against several disadvantages, such as a build-up of irreversible deleterious mutations. Selection should be more effective “with sex than without,” the researchers write.

But when the researchers compared the genome of the Amazon molly to two similar species (P. latipinna and P. Mexicana), they were surprised to find the molly had “unique genetic variability” and that it was still evolving. “Unexpectedly, we found no widespread signs of genomic decay,” the researchers write. Instead, they discovered substantial genetic variation within the clonal population. The mollies also appeared to retain genes involved in functions that females don’t need, such as spermatogenesis.

Perhaps most strikingly, they found that the Amazon molly also has astronomical levels of genetic diversity within its genome, also known as heterozygosity. Believed to be a hybrid species from distantly related Atlantic mollies and Sailfin mollies, the Amazon molly’s heterozygosity is 10 times that of its sexually reproducing parental species. “These characteristics seem to be a principal reason for the unpredicted fitness of this asexual vertebrate,” the researchers write. Their analysis “may change our view on asexual organisms that practice gynogenesis.”

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing