Menu

Artificial Mouse Embryo Made in a Laboratory

The embryo, grown in a dish from several types of stem cells, went through gastrulation, a significant stage in development.

Jul 25, 2018
Sukanya Charuchandra

ABOVE: Synthetic embryo-like structure made of three stem cell types in yellow, pink, and green
ZERNICKA-GOETZ LAB, UNIVERSITY OF CAMBRIDGE

Researchers have used three types of stem cells to create a mouse embryo in a dish, according to research published in Nature Cell Biology yesterday (July 23). The cultured embryos transformed into a multilayered structure, which helps establish subsequent cell types and axes of the body. When the mixture of cells attained the appropriate density, they independently self-organized into a clump. 

“Our artificial embryos underwent the most important event in life in the culture dish,” coauthor Magdalena Zernicka-Goetz, a professor at the University of Cambridge in the U.K., says in a statement. “They are now extremely close to real embryos.” For further growth, the artificial embryos would need to be implanted into a real or synthetic womb.  

Using their lab-made embryo, the researchers can better understand how the three types of stem cells affect each other and probe the intricacies of development. 

“While [this study] did not use human stem cells, it is not too far-fetched to think the technique could one day be applied to studying early human embryos,” Christophe Galichet, a senior research scientist at the Francis Crick Institute in the U.K. who was not involved in the study, writes to Reuters.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.