Menu

As bats hibernate so does rabies

A new study shows that a long winter's nap slows the spread of rabies through colonies of the flying mammal and is thus essential for the long-term viability of their populations.

Jun 6, 2011
Tia Ghose

Big Brown BatIMAGE: FURRYSCALYMAN VIA FLICKR

In at least one bat species, hibernation keeps the rabies virus at bay, according to a new mathematical model published Monday (June 6) in PNAS. Their annual winter slumber allows the big brown bats (Eptesicus fuscus) to survive till the warmer months, when the sick animals can infect a new crop of baby bats.

“What’s really exciting is that it ties the seasonal behaviors of these animals to how they interact with the disease and how their populations persist in the presence of the disease,” said Paul Cryan, a research biologist with the U.S. Geological Survey who was not involved with the study.

Scientists had previously modeled how rabies infects animals that don’t hibernate, such as skunks or raccoons. But those models couldn’t capture the summer spike in rabies deaths that occurs after bats come out of hibernation, which helps big brown bats survive colder months when their insect food source dries up.

To understand how winter dormancy affected transmission, Colorado State University biological modeler Dylan George, and his colleagues modified existing rabies transmission models to account for hibernation.

To calibrate their model, they used lab data on rabies disease progression, as well five years of overall hibernation and mortality data gleaned from the comings and goings of about 4,000 tagged bats to roughly 160 maternity roosts in Fort Collins, Colorado.  They checked the prediction of their model against bat rabies cases reported to the Centers for Disease Control.

In the model, when bats went into cold storage, the virus did as well. That’s because a hibernating bat’s body temperature drops to match the outside temperature, causing viral replication to halt. “Hibernation for the virus is almost like putting it in freeze-frame or putting it into Carbonite,” said George, who is now with the US Department of Defense.

As a result, even though the rabies virus normally kills bats in about six days in the lab, infected bats could stay alive through the long, cold winter. That enabled infected bats to wake up from hibernation and pass along the disease to young, immunologically naïve bats in the spring and summer.

Hibernation also seems to stabilize the survival of both rabies and bats within a colony. When George and his coauthors removed hibernation from the model, bats—gregarious, social creatures—passed on the disease and died off so quickly that populations were rapidly decimated and they went extinct.

The study also showed the power of using modeling to enhance field work on wildlife, said James Wood, a veterinary epidemiologist at Cambridge University who was not involved with the study.

The model could be extended to study other bat populations, and may also have implications for the spread of human diseases that also live in bats, including SARS and Ebola, George said.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.