Complications of Brain Manipulations

The complex connectivities of mammalian and avian brains can confound the outcomes of transient neural manipulations, researchers show.

Dec 9, 2015
Ruth Williams

Zebra finchWIKIMEDIA, PERIPITUSAcute manipulations of specific brain regions can have strikingly different effects than permanent lesions of the same areas, according to a report in Nature today (December 9). The results of the study, in which scientists examined specific behaviors in rats and songbirds, suggest that transient neural stimulations or inactivations may cause off-target behavioral effects that can complicate data interpretation.

“This is a paper that had to be done,” said behavioral neuroscientist Giulio Tononi of the University of Wisconsin who was not involved in the study. “The work is very elegant, very careful, and it shows something that one could definitely suspect . . . but that has never been shown so explicitly: that when we do an acute manipulation of a piece of the brain, you can [also] produce effects at a distance.”

Before the advent of techniques that could reversibly alter brain cell function, such as optogenetic stimulation and pharmacological inactivation, the majority of information about how the brain functioned came from “more than a century of lesion studies,” said Bence Ölveczky of Harvard University. These permanent alterations to specific brain regions revealed a rough map of which bodily functions and behaviors were controlled where. It was thought that transient alterations might similarly reveal region-specific control but with finer detail and greater precision. Ölveczky’s work, however, has now revealed this may not always be the case.

The path to Ölveczky’s discovery actually began with “an experiment gone wrong” followed by “a surprise,” he said. His team had been investigating how transient inactivation of a region of motor cortex in rats affected their abilities to perform a learned motor task: pressing a lever twice in short succession to receive a reward. However, during one of the transient inactivations—which involved precision injection of a neurotransmitter inhibitor into the cortex—Ölveczky feared some slight damage to the brain tissue had occurred. Rather than excluding the animal from the analysis, Ölveczky carried out a more extensive permanent lesion in the target area and compared this animal’s task performance to the others. While the rats with transient motor cortex inactivation failed to execute the lever press task, the rat with the permanent lesion performed the task as normal.

“For some time, after I realized the lesion didn’t have an effect, we were quite disappointed because it was not what we had hypothesized,” Ölveczky told The Scientist.  “But then we felt that we had to follow up on this.”

So the researchers set out to determine whether such discrepancy between permanent lesioning and transient manipulations was a more general phenomena. In zebra finches, lesioning of a brain region called the sensorimotor nucleus interface has previously been shown to leave the birds’ courtship singing intact. When the team transiently inactivated the same region, however, the birds’ singing was dramatically impaired.

The team also showed that not only did transient inactivation of a region impair an animal’s task performance, so too did transient optogenetic stimulation. This suggested that following any transient manipulation to a brain region there may be an acute widespread circuit dysfunction that does not necessarily reflect the region’s direct function.

The difference between short and long-term inactivation of the same brain region appears to be the experimental equivalent of a clinical phenomenon celled diaschisis, said Tononi. Diaschisis is a temporary loss of function in one brain region caused by damage to another—or, in experimental terms, an off-target effect. The phenomenon is thought to explain why many of the severe symptoms seen during the acute phase of a stroke, for example, can quickly recede during early recovery. The actual region damaged by the stroke, on the other hand, will cause long lasting or permanent loss of a more specific brain function.

It is clear that “there are fundamental differences between long-term manipulations, rapid pharmacological manipulations, and rapid optogenetic manipulations,” said neurobiologist Eve Marder of Brandeis University in Waltham, Massachusetts, who did not participate in the work. “Each manipulation has strengths and weaknesses and reveals different aspects of circuit function.”

While the take-home message is that no one approach is perfect and all results must be interpreted carefully, said Marder, there is optimism going forward. There are people putting a lot of time and energy into generating accurate connectivity maps of the brain, she said, and “[if] you have a detailed anatomical connectome and [if] you have very well-characterized cell type identifications, all manipulations will become much more interpretable.”

Until then, she added, “the message is to have a multipronged approach.”

T.M. Otchy et al., “Acute off-target effects of neural circuit manipulations,” Nature, doi:10.1038/nature16442, 2015.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb


Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.