Menu

CRISPR Can Track Cellular History of a Mammalian Embryo

Researchers used the genome-editing technology to analyze the development of mouse tissues.

Aug 10, 2018
Sukanya Charuchandra

ABOVE: WYSS INSTITUTE AT HARVARD UNIVERSITY

Using CRISPR, researchers have crafted a technique to study mammalian development in exceptional detail, according to a report published in Science yesterday (August 9).

“This method allows us to take the final developmental stage of a model organism and from there reconstruct a full lineage tree all the way back to its single-cell stage,” coauthor George Church, a professor of genetics at Harvard Medical School, tells The Harvard Gazette. “It’s an ambitious goal that will certainly take many labs several years to realize, but this paper represents an important step in getting there.”

To tag cells in developing mice, Church’s group used CRISPR’s habit of leaving behind a sign when editing DNA to create a barcode of 60 such marks across their genomes. Every time a cell divided, a new edit mark integrated into its DNA creating a unique combination over many rounds of division. By analyzing the collective signature of edits picked up by a cell, the team could trace its entire history. 

For instance, the developers were able to track the origin of cells in the heart, limbs, and placental tissue of a 12-day-old mouse embryo. And in another demonstration, when they compared the barcodes of brain cells taken from the analogous regions of different sides of two mouse brains, those labels were more similar to each other (suggesting a recent developmental divergence) than to their neighboring neurons of the same hemisphere. This implied that the brain’s front to back axis forms before its left to right one. 

According to Nature, Jan Philipp Junker, who studies quantitative developmental biology at the Max Delbrück Center for Molecular Medicine in Germany, says individual cells need to be tagged and studied instead of a group within a specific tissue so as to have a better resolution of cellular history.

The researchers plan to refine this new method to trace the history of every single cell in a fully developed organism. “Being able to record cells continuously over time is a huge milestone in developmental biology that promises to exponentially increase our understanding of the process by which a single cell grows to form to an adult animal and, if applied to disease models, it could provide entirely new insights into how diseases, such as cancer, emerge,” Donald Ingber, director of the Wyss Institute for Biologically Inspired Engineering at Harvard University, tells The Gazette

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Download this application note from ACEA Biosciences, Inc., to find out how to perform an immunophenotypic analysis of a human blood sample utilizing 13 fluorescent markers using a compact benchtop flow cytometer equipped with 3 lasers!