Menu

CRISPR Can Track Cellular History of a Mammalian Embryo

Researchers used the genome-editing technology to analyze the development of mouse tissues.

Aug 10, 2018
Sukanya Charuchandra

ABOVE: WYSS INSTITUTE AT HARVARD UNIVERSITY

Using CRISPR, researchers have crafted a technique to study mammalian development in exceptional detail, according to a report published in Science yesterday (August 9).

“This method allows us to take the final developmental stage of a model organism and from there reconstruct a full lineage tree all the way back to its single-cell stage,” coauthor George Church, a professor of genetics at Harvard Medical School, tells The Harvard Gazette. “It’s an ambitious goal that will certainly take many labs several years to realize, but this paper represents an important step in getting there.”

To tag cells in developing mice, Church’s group used CRISPR’s habit of leaving behind a sign when editing DNA to create a barcode of 60 such marks across their genomes. Every time a cell divided, a new edit mark integrated into its DNA creating a unique combination over many rounds of division. By analyzing the collective signature of edits picked up by a cell, the team could trace its entire history. 

For instance, the developers were able to track the origin of cells in the heart, limbs, and placental tissue of a 12-day-old mouse embryo. And in another demonstration, when they compared the barcodes of brain cells taken from the analogous regions of different sides of two mouse brains, those labels were more similar to each other (suggesting a recent developmental divergence) than to their neighboring neurons of the same hemisphere. This implied that the brain’s front to back axis forms before its left to right one. 

According to Nature, Jan Philipp Junker, who studies quantitative developmental biology at the Max Delbrück Center for Molecular Medicine in Germany, says individual cells need to be tagged and studied instead of a group within a specific tissue so as to have a better resolution of cellular history.

The researchers plan to refine this new method to trace the history of every single cell in a fully developed organism. “Being able to record cells continuously over time is a huge milestone in developmental biology that promises to exponentially increase our understanding of the process by which a single cell grows to form to an adult animal and, if applied to disease models, it could provide entirely new insights into how diseases, such as cancer, emerge,” Donald Ingber, director of the Wyss Institute for Biologically Inspired Engineering at Harvard University, tells The Gazette

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.