Menu

ISTOCK, DRA_SCHWARTZ

CRISPR Gene Drive Used to Alter Mouse Coat Color

It’s the first demonstration of the technology in mammals.

Jul 9, 2018
Shawna Williams

In a preprint posted to bioRxiv last week (July 4), researchers at the University of California, San Diego, report using a CRISPR-Cas9 gene drive in mammals for the first time. Gene drives ensure that offspring preferentially inherit one parent’s particular allele, so that a variant can quickly spread through a population even if it is detrimental to reproduction or survival. The UCSD researchers were able to get a drive to work in the germlines of developing female mice, but only some of the time; on average, the offspring inherited the desired allele 73 percent of the time (as opposed to the typical 50 percent without a gene drive).

“These results demonstrate that the CRISPR/Cas9 gene drive mechanism can be implemented to simplify complex genetic crosses in laboratory mice and also contribute valuable data to the ongoing debate about applications to combat invasive rodent populations in island communities,” the authors write in their report.

See “Using Gene Drives to Limit the Spread of Malaria

Gene drives have drawn wide attention and controversy for their potential to help control disease-carrying mosquito populations by spreading alleles that cause infertility. The new study breaks fresh ground by exploring whether the CRISPR-Cas9 editing technique can successfully implement a gene drive in mammals—in this case, by spreading a gene for white coat color. The results are “an indication it could work, but it’s also sobering,” geneticist Paul Thomas of the University of Adelaide in Australia who was not involved in the research tells Nature. “It’s a lot longer to go where you could consider gene drives for a useful tool for population control of rodents.” 

See “Driving Down Pests

Clarification (July 11): The final sentence of the first paragraph of this article has been updated to clarify the outcome of the study.

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!