Menu

ISTOCK, DRA_SCHWARTZ

CRISPR Gene Drive Used to Alter Mouse Coat Color

It’s the first demonstration of the technology in mammals.

Jul 9, 2018
Shawna Williams

In a preprint posted to bioRxiv last week (July 4), researchers at the University of California, San Diego, report using a CRISPR-Cas9 gene drive in mammals for the first time. Gene drives ensure that offspring preferentially inherit one parent’s particular allele, so that a variant can quickly spread through a population even if it is detrimental to reproduction or survival. The UCSD researchers were able to get a drive to work in the germlines of developing female mice, but only some of the time; on average, the offspring inherited the desired allele 73 percent of the time (as opposed to the typical 50 percent without a gene drive).

“These results demonstrate that the CRISPR/Cas9 gene drive mechanism can be implemented to simplify complex genetic crosses in laboratory mice and also contribute valuable data to the ongoing debate about applications to combat invasive rodent populations in island communities,” the authors write in their report.

See “Using Gene Drives to Limit the Spread of Malaria

Gene drives have drawn wide attention and controversy for their potential to help control disease-carrying mosquito populations by spreading alleles that cause infertility. The new study breaks fresh ground by exploring whether the CRISPR-Cas9 editing technique can successfully implement a gene drive in mammals—in this case, by spreading a gene for white coat color. The results are “an indication it could work, but it’s also sobering,” geneticist Paul Thomas of the University of Adelaide in Australia who was not involved in the research tells Nature. “It’s a lot longer to go where you could consider gene drives for a useful tool for population control of rodents.” 

See “Driving Down Pests

Clarification (July 11): The final sentence of the first paragraph of this article has been updated to clarify the outcome of the study.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.