Menu

CRISPR Gene Editing Deletes, Shuffles More Genes than Intended

The DNA-cutting enzyme used in the technique is not as precisely targeted as scientists had thought, and investors take notice.

Jul 16, 2018
Ashley Yeager

CRISPR gene editing can create large numbers of unwanted DNA changes that may go undetected, researchers report today (July 16) in Nature Biotechnology. The findings suggest that some potential treatments using the gene-editing tool may not yet be safe to test in humans.

“Anyone thinking of using this technology for gene therapy” should proceed with caution, and “check for possible harmful effects,” study coauthor Allan Bradley, a geneticist at the Wellcome Sanger Institute, tells Reuters

The data show that CRISPR’s DNA-cutting enzyme can delete or rearrange large numbers of genes beyond what it is designed to edit. The findings add to previous studies that have shown that CRISPR and other gene-editing systems can cause off-target effects and even possibly increase the risk that some edited cells could become cancerous when certain genes that should be active are not functioning properly.

See “CRISPR Efficiency Tied to Cancer-Causing Process

The changes to DNA have been “seriously underestimated,” Bradley tells STAT News. “This should be a wake-up call.”

According to STAT, the value of three publicly traded CRISPR companies dipped by more than $300 million within 20 minutes of the study’s release. Those working at the companies seem less concerned than investors. “We’re not Pollyannaish about this,” geneticist Tom Barnes, chief innovation officer at Intellia Therapeutics, tells STAT. Researchers there are using CRISPR in liver cells and “have not seen any [cancer-causing] transformation of these cells, even with all the edits we’ve introduced,” he says.

The findings add “more safety challenges to CRISPR-based gene therapies but it doesn’t compromise its use,” Gaetan Burgio, a geneticist at the Australian National University who was not involved the study, tells New Scientist.

James Haber, a molecular biologist at Brandeis University, agrees. The findings shouldn’t stop researchers from using CRISPR, he tells Nature. “It means that when people use it, they need to do a more thorough analysis” of mutations.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

Horizon Discovery extends CRISPR Screening Service to primary human T cells
Horizon Discovery extends CRISPR Screening Service to primary human T cells
Horizon Discovery Group plc (LSE: HZD) (“Horizon” or “the Company”), a global leader in gene editing and gene modulation technologies, today announced the extension of its CRISPR Screening Service to includeex vivoT lymphocytes. The service extension meets the requirements of immunology-based research in drug discovery,enabling new gene targets to be identified in biologically and potentially therapeutically relevant settings.
pIC50: The Advantages of Thinking Logarithmically
pIC50: The Advantages of Thinking Logarithmically
Watch this webinar from Collaborative Drug Discovery to learn about how using pIC50 helps you get a better sense of the relative potencies, calculate the correct mean of multiple values, and select better sampling doses.
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.