Menu

CRISPR Gene Editing Deletes, Shuffles More Genes than Intended

The DNA-cutting enzyme used in the technique is not as precisely targeted as scientists had thought, and investors take notice.

Jul 16, 2018
Ashley Yeager

CRISPR gene editing can create large numbers of unwanted DNA changes that may go undetected, researchers report today (July 16) in Nature Biotechnology. The findings suggest that some potential treatments using the gene-editing tool may not yet be safe to test in humans.

“Anyone thinking of using this technology for gene therapy” should proceed with caution, and “check for possible harmful effects,” study coauthor Allan Bradley, a geneticist at the Wellcome Sanger Institute, tells Reuters

The data show that CRISPR’s DNA-cutting enzyme can delete or rearrange large numbers of genes beyond what it is designed to edit. The findings add to previous studies that have shown that CRISPR and other gene-editing systems can cause off-target effects and even possibly increase the risk that some edited cells could become cancerous when certain genes that should be active are not functioning properly.

See “CRISPR Efficiency Tied to Cancer-Causing Process

The changes to DNA have been “seriously underestimated,” Bradley tells STAT News. “This should be a wake-up call.”

According to STAT, the value of three publicly traded CRISPR companies dipped by more than $300 million within 20 minutes of the study’s release. Those working at the companies seem less concerned than investors. “We’re not Pollyannaish about this,” geneticist Tom Barnes, chief innovation officer at Intellia Therapeutics, tells STAT. Researchers there are using CRISPR in liver cells and “have not seen any [cancer-causing] transformation of these cells, even with all the edits we’ve introduced,” he says.

The findings add “more safety challenges to CRISPR-based gene therapies but it doesn’t compromise its use,” Gaetan Burgio, a geneticist at the Australian National University who was not involved the study, tells New Scientist.

James Haber, a molecular biologist at Brandeis University, agrees. The findings shouldn’t stop researchers from using CRISPR, he tells Nature. “It means that when people use it, they need to do a more thorough analysis” of mutations.

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

Slice® Safety Cutters for Lab Work

Slice® Safety Cutters for Lab Work

Slice cutting tools—which feature our patent-pending safety blades—meet many lab-specific requirements. Our scalpels and craft knives are well suited for delicate work, and our utility knives are good for general use.

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

The Lab of the Future: Alinity Poised to Reinvent Clinical Diagnostic Testing and Help Improve Healthcare

Every minute counts when waiting for accurate diagnostic test results to guide critical care decisions, making today's clinical lab more important than ever. In fact, nearly 70 percent of critical care decisions are driven by a diagnostic test.

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.