Menu

CRISPR Restores Muscle Function in Mice

Scientists use the gene-editing tool to treat animals with a rare form of congenital muscular dystrophy.

Jul 17, 2017
Diana Kwon

ISTOCK, DRA_SCHWARTZUsing CRISPR, researchers have successfully treated congenital muscular dystrophy type 1A (MDC1A), a rare disease that can lead to severe muscle wasting and paralysis, in mice. The team was able to restore muscle function by correcting a splicing site mutation that causes the disorder, according to a study published today (July 17) in Nature Medicine

“Instead of inserting the corrected piece of information, we used CRISPR to cut DNA in two strategic places,” study coauthor Dwi Kemaladewi, a research fellow at the Hospital for Sick Children (Sick Kids) in Toronto, explains in a statement. “This tricked the two ends of the gene to come back together and create a normal splice site.”

By targeting both the skeletal muscles and peripheral nerves, the team was able to improve the animals’ motor function and mobility. “This is important because the development of therapeutic strategies for muscular dystrophies have largely focused on improving the muscle conditions,” Kemaladewi says in the release. “Experts know the peripheral nerves are important, but the skeletal muscles have been perceived as the main culprit in MDC1A and have traditionally been the focus of treatment options.”

“The robustness of the correction we see in animal models to me is very encouraging,” Amy Wagers, a biologist at Harvard University who was not involved in this study, tells the Toronto Star.

See “CRISPR Improves Disease in Adult Mice

Wagers’s group and others have used CRISPR to fix a protein deficiency in adult mice with another rare muscle disease, Duchenne muscular dystrophy (DMD). Kemaladewi and colleagues have also tackled this disorder—in a 2015 study, their team used the gene editing tool to remove a duplicated gene and restore protein function in the cells of a patient with DMD.

See “CRISPR Therapy in a Dish

“For the first time it’s possible to think about—and this is still at the thinking stage, let’s be clear—the possibilities of gene correction in humans with these diseases,” Janet Rossant, a stem cell and developmental biologist at Sick Kids who was not involved in the research, tells the Toronto Star.

November 2018

Intelligent Science

Wrapping our heads around human smarts

Marketplace

Sponsored Product Updates

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC announces new, integrated, global portfolio brand, Biosearch Technologies, representing genomic tools for mission critical customer applications

LGC’s Genomics division announced it is transforming its branding under LGC, Biosearch Technologies, a unified portfolio brand integrating optimised genomic analysis technologies and tools to accelerate scientific outcomes.

DefiniGEN licenses CRISPR-Cas9 gene editing technology from Broad Institute to develop cell models for optimized metabolic disease drug development

DefiniGEN licenses CRISPR-Cas9 gene editing technology from Broad Institute to develop cell models for optimized metabolic disease drug development

DefiniGEN Ltd are pleased to announce the commercial licensing of CRISPR-Cas9 gene-editing technology from Broad Institute of MIT and Harvard in the USA, to develop human cell disease models to support preclinical metabolic disease therapeutic programmes.

Thermo Fisher Scientific: Freezers for Biological Samples

Thermo Fisher Scientific: Freezers for Biological Samples

Fluctuations in temperature can reduce the efficacy, decompose, or shorten the shelf life of biologics. Therefore, it is important to store biologics at the right temperature using standardized protocols.