Menu

Electric Shock Allows for CRISPR Gene Editing Without a Viral Vector

Brief electroporation appears to make T cells more receptive to new genetic material, which could speed the development of immunotherapies.

Jul 12, 2018
Ashley Yeager

A quick zap of electricity makes T cells more receptive to taking in new genetic material and gene-editing reagents, researchers report July 11 in Nature. The discovery could expedite protocols for creating immunotherapies to treat a range of cancers.

“What takes months or even a year may now take a couple weeks using this new technology,” Fred Ramsdell, vice president of research at the Parker Institute for Cancer Immunotherapy in San Francisco, where one of the authors of the study is a member, tells The New York Times. “If you are a cancer patient, weeks versus months could make a huge difference.”

Traditionally, researchers genetically alter immune cells for immunotherapy treatments using disabled viruses. The viruses inject new genes into T cells, which, when infused into cancer patients, target tumors for destruction. But developing new viruses to edit the genetic material of T cells can take several years, and the viruses can only introduce a limited amount of DNA—a few dozen bases—into the T cells.

To speed up the process of tweaking the T cells’ DNA and to allow for longer stretches, up to hundreds of bases, to be introduced, Alexander Marson, a microbiologist and immunologist at the University of California, San Francisco, and colleagues used electroporation to get the cells to relax enough to allow new genetic material and gene-editing tools, such as CRISPR-Cas9 reagents, inside without the viral ferry. However, the researchers are not yet sure exactly why the shock works, according to The Washington Post.

See “Tricky Transfections

Still, “it's a turning point,” Vincenzo Cerundolo, director of the Human Immunology Unit at Oxford University who was not involved with this study, tells The Post. “It is a game-changer in the field and I'm sure that this technology has legs.”

So far, the technique has been used to tweak the genetic material in healthy donor T cells and to correct a single mutation in cells from children with an autoimmune disease, but the cells have not yet been put back into the patients. The team is now working to get approval from the US Food and Drug Administration to treat the children with the tweaked T cells.

First, the team needs to answer a “critical first question: Are these cells safe to be put back into people?” study coauthor Kevan Herold, an endocrinologist and immunologist at Yale University, tells The Post.

The team also tested the technique’s ability to alter T cells to target melanoma and found the tweaked immune cells attacked the cancer cells in mice. 

The technology “really opens up the ability for us, as a community, to think about very creative and potentially unique ways to activate a T cell,” Ramsdell tells The Post.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.