Menu

Gut Microbes Linked to Neurodegenerative Disease

Bacteria in the intestine influence motor dysfunction and neuroinflammation in a mouse model of Parkinson’s disease.

Dec 1, 2016
Abby Olena

Gut microbes can initiate activation of microglia, which leads to the neuroinflammation that is characteristic of Parkinson’s disease.CALTECH/S. MAZMANIAN LABMany people with Parkinson’s disease have digestive symptoms like constipation years before they have neurological symptoms, and scientists have found differences in the gut microbiome compositions of patients with Parkinson’s disease and healthy controls. But whether and how gut microbes contribute to the pathology and symptoms of the disease has been an open question.

In a study published today (December 1) in Cell, a team led by Timothy Sampson and Sarkis Mazmanian of Caltech demonstrate that gut microbiota promote neuroinflammation and motor deficits in a mouse model of Parkinson’s disease. The researchers also identify a possible mechanism for the influence of intestinal microbes and on the development of the disease in mice.

“It’s a beautiful study,” Justin Sonnenburg of Stanford University School of Medicine, who did not participate in the work, told The Scientist. “It’s really a first in establishing that gut microbes can not only contribute, but appear to play a causal role in neurodegenerative disease in this mouse model,” he added.

Sampson, Mazmanian, and colleagues used transgenic mice that overexpress human α-synuclein, the protein that forms the insoluble aggregates that are a hallmark of Parkinson’s disease. These mice exhibit deficits in motor function and gut motility.

Transgenic animals raised germ-free or treated with antibiotics performed better at motor tasks and maintained fecal output, as compared to those with typical microbiota, the researchers reported. Mice without intestinal microbes or those receiving antibiotic treatment also developed fewer α-synuclein aggregates in their brains than did their counterparts with intestinal microbes. In other words, in transgenic mice without intestinal bacteria and in those treated with antibiotics, both Parkinson’s-like symptoms and brain pathology decreased.

The researchers found evidence of inflammation in the brains of transgenic mice with typical microbiota that was not present in germ-free transgenic mice. When the team fed short-chain fatty acids—microbial metabolites—to germ-free transgenic mice, the animals developed inflammation, α-synuclein aggregates, and motor deficits. The authors propose a mechanistic link between the disease and the production of short-chain fatty acids by gut microbiota.

Artist’s concept depicting microbes in the gut instigating changes in the brain that can lead to Parkinson’s diseaseCALTECHMazmanian pointed to the complementarity of research analyzing the microbiota of human patients with Parkinson’s disease and the present study, on mice, which allowed a deeper look at α-synuclein pathology, immune system activation, and the role of microbial metabolites. “All of that allowed us to start to get insight into the mechanism by which the microbiome may be contributing to symptoms of Parkinson’s,” he said.

“People have shown that there are these different communities of gut bacteria in persons with Parkinson’s disease compared to healthy controls,” Sampson said. “But nobody knew whether that was just a byproduct of the disease or whether those different communities could actually influence the disease itself.”

In order to address this question, the authors transplanted human gut–derived microbes from patients with Parkinson’s disease or from healthy controls into germ-free mice. Microbiota from patients with Parkinson’s disease promoted greater motor dysfunction than microbiota from matched controls in transgenic mice, the researchers found. Wild-type mice did not develop motor dysfunction in either transplant condition. Taken together, these findings suggest that Parkinson’s disease–associated microbes can promote symptoms in genetically predisposed animals.

“This is a landmark study because it’s the first proof of concept that you can induce Parkinson-typical symptoms in mice by transferring bacteria from Parkinson’s patients into those mice,” said Filip Scheperjans of Helsinki University Hospital, who was not involved in the work.

“People have been talking about Parkinson’s disease and the gut for some time, so that part isn’t that new, but the relationship with the microbiome is quite new,” said John Cryan of University College Cork, Ireland, who also was not involved in the work.

Scheperjans and Sonnenburg highlighted the need to further investigate the role of short-chain fatty acids, which are generally believed to be beneficial in humans, in contrast to the pro-disease role these metabolites seem to have played in this study.

Sampson said he plans to explore the composition of gut microbiota in people with Parkinson’s disease in order to understand whether there are specific microbial species that instigate disease and whether there might be treatment potential in dietary or other modifications.

Mazmanian also has his eye on possible treatments. To that end, he recently cofounded a company called Axial Biotherapeutics. “I don’t think it’s inconceivable to at least think about developing next-generation probiotics for Parkinson’s,” he said.                                                                                  

T.R. Sampson et al., “Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease,” Cell, doi:10.1016/j.cell.2016.11.018, 2016.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.