Menu

Tadpoles Keep Eating Because They Don’t Feel Full

Baby frogs don’t develop the neural circuitry responsible for feeding inhibition until they begin metamorphosing into adults. 

Mar 28, 2018
Catherine Offord

ISTOCK, KERKLAA tadpole has a lot of growing to do to get up to the size it needs to be to metamorphose into an adult frog or toad. Now, researchers at the University of Michigan suggest that this rapid growth is made possible by a lack of inhibitory feeding controls prior to metamorphosis. The team reports the absence of these controls, along with the hormonal regulation that accompanies it, today (March 28) in Proceedings of the Royal Society B.

“Our findings are consistent with the hypothesis that the strong drive to eat prior to metamorphosis is due to the absence, or the relative immaturity of hypothalamic feeding control circuits,” the authors write in their paper. This lack of inhibition helps allow “the animal to maximize growth during this critical life-history stage.”

Previous work by the researchers had implicated a role for leptin, a hormone that acts as a hunger inhibitor in vertebrates, in regulating the changing feeding habits of toads during early development. To investigate how this hormone might prepare juvenile amphibians for metamorphosis, the team analyzed levels of mRNA transcripts for leptin receptor proteins and for the hormone itself in tadpoles of the African clawed frog (Xenopus laevis).

The researchers found that the tadpoles were essentially unresponsive to leptin, unlike their adult counterparts, and showed minimal expression of the leptin receptor in the hypothalamus—a key brain region in the regulation of feeding behavior. Instead, these responses develop as the relevant neural circuits mature during metamorphosis, the authors write.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!