Menu

Tadpoles Keep Eating Because They Don’t Feel Full

Baby frogs don’t develop the neural circuitry responsible for feeding inhibition until they begin metamorphosing into adults. 

Mar 28, 2018
Catherine Offord

ISTOCK, KERKLAA tadpole has a lot of growing to do to get up to the size it needs to be to metamorphose into an adult frog or toad. Now, researchers at the University of Michigan suggest that this rapid growth is made possible by a lack of inhibitory feeding controls prior to metamorphosis. The team reports the absence of these controls, along with the hormonal regulation that accompanies it, today (March 28) in Proceedings of the Royal Society B.

“Our findings are consistent with the hypothesis that the strong drive to eat prior to metamorphosis is due to the absence, or the relative immaturity of hypothalamic feeding control circuits,” the authors write in their paper. This lack of inhibition helps allow “the animal to maximize growth during this critical life-history stage.”

Previous work by the researchers had implicated a role for leptin, a hormone that acts as a hunger inhibitor in vertebrates, in regulating the changing feeding habits of toads during early development. To investigate how this hormone might prepare juvenile amphibians for metamorphosis, the team analyzed levels of mRNA transcripts for leptin receptor proteins and for the hormone itself in tadpoles of the African clawed frog (Xenopus laevis).

The researchers found that the tadpoles were essentially unresponsive to leptin, unlike their adult counterparts, and showed minimal expression of the leptin receptor in the hypothalamus—a key brain region in the regulation of feeding behavior. Instead, these responses develop as the relevant neural circuits mature during metamorphosis, the authors write.

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing