Deciphering Protein Evolution

One of the enduring questions in biology is how eukaryotic cells arose from prokaryotic ancestors at least 2 billion years ago. Besides differences in genome organization, eukaryotic animals, plants, and fungi possess a much higher degree of cellular compartmentation in the form of membrane bound organelles than their distant bacterial and Archaean cousins. But how did such a plethora of cellular domains, each with a discrete role in metabolism, evolve? To the extent that science proves anythi

Barry Palevitz
Nov 25, 2001
One of the enduring questions in biology is how eukaryotic cells arose from prokaryotic ancestors at least 2 billion years ago. Besides differences in genome organization, eukaryotic animals, plants, and fungi possess a much higher degree of cellular compartmentation in the form of membrane bound organelles than their distant bacterial and Archaean cousins. But how did such a plethora of cellular domains, each with a discrete role in metabolism, evolve?

To the extent that science proves anything, it answered the question for two eukaryotic organelles a long time ago. Mitochondria and chloroplasts evolved from endosymbiotic associations between an ancestral host cell and smaller prokaryotic partners. In the case of chloroplasts, the symbiont was a photosynthetic cyanobacterium; for mitochondria, most likely it was ana-proteobacterium.

The cytoplasm of eukaryotic cells is like chicken soup-it's chock full of organelles suspended like chunks of assorted vegetables and noodles in cytosolic broth. The...

Interested in reading more?

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?