Apples Lay the Foundation for Regenerating Bone

Researchers use innovative plant-based biomaterials to grow new bone for restoring depleted bone mass after space travel.

Written byIris Kulbatski, PhD
| 4 min read
Researchers are applying mechanical force to bone cells grown on apple scaffolds to mimic the affect of gravity on bone regeneration.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Apples have a long history of inspiring scientific progress. When Sir Isaac Newton watched an apple fall from a tree in 1666, he had a brilliant insight that led to his discovery of gravity.1,2 Little did Newton know that more than three centuries after his epiphany, Canadian researchers would serendipitously conceive of using apples to regenerate bone and that his discovery of gravitational force would shape their understanding of how to do so.

Gravity is essential for maintaining and regrowing bone, which undergoes a natural process of deterioration and restoration.3 The force of gravity and the physical exertion of movement and exercise stimulate the production of osteoblasts—cells that create new bone. Despite this innate regenerative activity, injury, disease, age, and the weightlessness of space travel create bone deficits. As a result, researchers seek ways to bioengineer bone tissue using osteoblasts grown in cell culture.

In a recent study published in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Iris Kulbatski, PhD

    Iris, a neuroscientist by training and word surgeon by trade, is an associate science editor with The Scientist's Creative Services Team. Her work has appeared in various online and print publications, including Discover Magazine, Medgadget, National Post, The Toronto Star and others. She holds a PhD in Medical Science and a Certificate in Creative Writing from the University of Toronto. Her left and right brain converse on a regular basis. Once in a while, they collaborate.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies