Nuclear transfer results in inherently unstable offspring

Mammalian development seems to relatively tolerant to epigenetic aberrations of the genome, suggesting that cloning could result in viable offspring, despite widespread gene dysregulation.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

BRISTOL Although nuclear transfer technology has been used to produce live clones in several species including cattle, sheep, goats, pigs and mice, only a small percentage of nuclear transfer embryos develop to term. A team from the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, and the Department of Anatomy and Reproductive Biology, University of Hawaii, analyzed imprinted gene expression in mice cloned by nuclear transfer and compared it to expression in the original embryonic stem (ES) cell population. The aim was to try to correlate gene expression with both survival and foetal overgrowth.

They found that the epigenetic state of the ES cell genome was extremely unstable and that variation in imprinted gene expression occurred in most cloned mice - even in those derived from ES cells of the same clone. But the most intriguing finding was that a small number of the mice survived to adulthood despite widespread dysregulation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Adam Legge

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo