Opinion: The New Frontiers of Epigenetics

Newly developed techniques could propel a field already advancing rapidly to complement modern medicine.

Written byJohn D. Loike
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: A model of the nucleosome
© ISTOCK.COM, THEASIS

John D. Loike, a Professor of Biology at Touro College and University Systems, writes a regular column on bioethics for The Scientist.

Epigenetics, the study of mechanisms by which genes are turned on or off without altering their genetic code or DNA sequences, is one of many ways that cells regulate gene expression. Epigenetics has helped scientists better understand complex and diverse biological processes such as cell differentiation, genomic imprinting, and X-chromosome inactivation and operates via two mechanistic processes: a) histone modifications (for example, methylation, acetylation, ubiquitination, and phosphorylation) and b) direct methylation of cytosine base pairs.

Two new methods of epigenetic assessment and intervention, APOBEC-coupled epigenetic sequencing (ACE-seq) and CRISPR, have the potential to dramatically enhance epigenetic research and its clinical applications.

Described in Nature Biotechnology last month, ACE-seq is a bisulfite-free method for localizing 5-hydroxymethylcytosine at single-base resolution with low ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • John Loike

    John Loike serves as the interim director of bioethics at New York Medical College and as a professor of biology at Touro University. He served previously as the codirector for graduate studies in the Department of Physiology Cellular Biophysics and director of Special Programs in the Center for Bioethics at Columbia University College of Physicians and Surgeons. His biomedical research focuses on how human white blood cells combat infections and cancer. Loike lectures internationally on emerging topics in bioethics, organizes international conferences, and has published more than 150 papers and abstracts in the areas of immunology, cancer, and bioethics. He earned his Ph.D. from the Albert Einstein College of Medicine of Yeshiva University.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH