When Dogs Offer Insights into Tigers

MRI scans of dog brains open windows into the cognition of the extinct thylacine.

Oct 1, 2017
Gregory Berns

BASIC BOOKS, SEPTEMBER 2017Earlier this year, there was a flurry of excitement in Queensland, Australia, over the renewed search for the iconic Tasmanian tiger—a.k.a. thylacine. Never mind that the last documented thylacine died in the Hobart Zoo in 1936, and that the animal was declared extinct 50 years later in accordance with international conservation standards. Sightings of the Tassie tiger have continued with regularity not only in Tasmania, but also on the mainland, where they haven’t lived for 4,000 years. And yet, a tiger was reported at the northernmost tip of the Cape York Peninsula this year, spurring an army of camera trappers into action to prove they’re still out there.

Clearly the dog-like appearance of the marsupial thylacine is a case of convergent evolution, but it made me wonder: If thylacines looked like dogs, did they think and behave like dogs do, too? Alas, the animal’s mind seemed lost forever. Thylacines had been extinguished just as scientists had begun looking seriously at animal behavior.

I became obsessed with the thylacine. But rather than trying to find one hiding in the Tasmanian bush (although I did that, too), I spent two years searching for and studying the one artifact that might actually tell us what it was like to be a thylacine: its brain.

I describe this research in my latest book, What It’s Like to Be a Dog: And Other Adventures in Animal Neuroscience.

There are four known thylacine brains sitting in jars of preservative in museums around the world. One is at the Smithsonian Institution in Washington, DC, one is in the Australian Museum in Sydney, while the two others reportedly suffered severe cuts when they were extracted from their skulls a century ago. My colleagues and I performed a type of MRI scan called diffusion tensor imaging (DTI) on the two good ones to forensically reconstruct the neural pathways in these century-old specimens. By comparing the architecture of the thylacine’s brain with that of canids as well as with the brain of another living carnivorous marsupial, the Tasmanian devil, we hoped to learn something about the mental life of this iconic animal.

Despite its outward doglike appearance, the thylacine’s brain looked very different from a dog’s brain. I should know. I’ve also trained dogs to go in MRI scanners, awake and unrestrained, so that we can figure out what they’re thinking. The marsupial tiger’s brain suggested a cunning creature capable of outsmarting its prey, perhaps depending on smell even more than dogs do. It would have lacked many of the social characteristics that make dogs so endearing. The thylacine was all business and would not have made a good pet.

Like all marsupials, the thylacine did not have a corpus callosum to connect the left and right hemispheres of its brain. Those connections were instead carried in a bundle of fibers called the anterior commissure, which is relatively small in canids and other placental mammals, including humans. But the thylacine did have a frontal lobe proportionately about the same size as a dog’s and bigger than that of the Tasmanian devil. This suggests an animal with the shrewd mentality of a predator.

Although I hope some thylacines are still out there, hiding in the Tasmanian bush, the odds are against it. But there is still a lesson to be learned from their brains. Currently, the vast discipline of neuroscience has focused on a handful of species: humans, monkeys, rats, and mice, and a few fish and worms. Within the mammals alone, there are 5,000 other species. And the large ones—the megafauna—are disappearing at an alarming rate. The proximate cause is loss of habitat. By studying their brains before they’re gone, we may learn something about other animals’ mental lives and how they have evolved cognitive adaptations to live in their environmental niches. Some may have cognitive architectures that make them more adaptable to climate change, while others may need more help. 

Gregory Berns is a professor of psychology at Emory University. Read an excerpt of What It’s Like to Be a Dog: And Other Adventures in Animal Neuroscience at

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb


Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!