ADVERTISEMENT
ADVERTISEMENT

A sea urchin genome project

Sea urchins are popular in developmental biology research thanks to their well defined embryology, the ease of gene transfer into eggs, and the abundance of eggs for biochemical work. Now the sea urchin genome project is off to a start with sequence from the ends of 76,020 bacterial artificial chromosome (BAC) recombinants. In the August 15 Proceedings of the National Academy of Sciences, Cameron et al. report that these sequence tag connectors (STCs) occur at an average of 10 kb apart in the s

William Wells(wells@biotext.com)

Sea urchins are popular in developmental biology research thanks to their well defined embryology, the ease of gene transfer into eggs, and the abundance of eggs for biochemical work. Now the sea urchin genome project is off to a start with sequence from the ends of 76,020 bacterial artificial chromosome (BAC) recombinants. In the August 15 Proceedings of the National Academy of Sciences, Cameron et al. report that these sequence tag connectors (STCs) occur at an average of 10 kb apart in the sea urchin genome and provide sequence of >5% of the genome (Proc Natl Acad Sci USA 2000, 97:9514-9518). The collaborating groups have also produced cDNA libraries of >105 clones for every major stage of embryogenesis, and are in the process of producing the complete sequence of the 500 kb Hox gene complex.

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?
ADVERTISEMENT