Histone codes

The histone code hypothesis posits that distinct combinations of histone modifications can recruit chromatin-modifying enzymes and exert epigenetic control over heterochromatin assembly. In the March 15 ScienceXpress, Nakayama et al. describe a role for histone methylation in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe. The Clr4 protein methylated lysine 9 of histone H3 (H3Lys9) preferentially within heterochromatin-associated regions. H3Lys9 methylation led to the r

Jonathan Weitzman(jonathanweitzman@hotmail.com)
Mar 18, 2001

The histone code hypothesis posits that distinct combinations of histone modifications can recruit chromatin-modifying enzymes and exert epigenetic control over heterochromatin assembly. In the March 15 ScienceXpress, Nakayama et al. describe a role for histone methylation in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe. The Clr4 protein methylated lysine 9 of histone H3 (H3Lys9) preferentially within heterochromatin-associated regions. H3Lys9 methylation led to the recruitment of the chromodomain protein Swi6, a homolog of Drosophila HP1. Both methylation and recruitment were dependent on activity of the histone deacetylase Clr3. Chromatin assembly by Swi6/Clr4 at the mating-type locus results in silencing. Hence, sequential deacetylation and methylation of histone tails leads ultimately to epigenetic inheritance patterns.

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?