ADVERTISEMENT
ADVERTISEMENT

How worms tackle stress

When an animal cell encounters a bacterial or chemical toxin, it needs to respond to ensure its survival, but how it does this is still poorly understood. Now, two independent studies clarify the involvement of the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signalling pathways in these responses in Caenorhabditis elegans. Both JNK and p38 are well known mediators of stress responses in mammalian cells, and in C. elegans, these proteins, other components involve

David Secko(dmsecko@interchange.ubc.ca)

When an animal cell encounters a bacterial or chemical toxin, it needs to respond to ensure its survival, but how it does this is still poorly understood. Now, two independent studies clarify the involvement of the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signalling pathways in these responses in Caenorhabditis elegans.

Both JNK and p38 are well known mediators of stress responses in mammalian cells, and in C. elegans, these proteins, other components involved in their signalling pathways, and their involvement in stress responses are conserved. The two new papers, reported in the July 12 issue of PNAS, together reveal an evolutionarily interconnected mechanism for responding to bacterial stress.

"MAPKs appear to be one of the most ancient defense pathways known from plants, yeasts, and animals," said Hinrich Schulenburg, from the University of Münster, and who was not involved in the two PNAS...

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?
ADVERTISEMENT