Mapping recombination

In the October 10 Proceedings of the National Academy of Sciences Gerton et al. use arrays to map hotspots and coldspots of meiotic recombination across the whole yeast genome (Proc Natl Acad Sci USA 2000, 97:11383-11390). They isolate DNA from sporulating cells that are mutant in rad50S, and therefore blocked with the recombination protein Spo11p covalently bound to DNA. The DNA fragments that are covalently linked to proteins (with Spo11p presumably predominant) are trapped using a glass filte

William Wells(wells@biotext.com)
Oct 17, 2000

In the October 10 Proceedings of the National Academy of Sciences Gerton et al. use arrays to map hotspots and coldspots of meiotic recombination across the whole yeast genome (Proc Natl Acad Sci USA 2000, 97:11383-11390). They isolate DNA from sporulating cells that are mutant in rad50S, and therefore blocked with the recombination protein Spo11p covalently bound to DNA. The DNA fragments that are covalently linked to proteins (with Spo11p presumably predominant) are trapped using a glass filter, and used as probes in an array experiment to identify recombination sites. Hotspots are denser and more active on smaller chromosomes, and are often associated with peaks of high G + C content. Metabolic genes, which have high transcriptional activity, are over-represented. As in previous studies, coldspots are associated with telomeres and centromeres.

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?