ADVERTISEMENT
ADVERTISEMENT

Structure of a biological propeller

explains how bacteria can switch between 'running' and 'tumbling' motions.

Kenneth Lee(kenlee_fr@yahoo.fr)

The flagellum, the organelle that enables bacteria to swim, consists of a long, thin filament that is rotated at hundreds of revolutions per second by a motor embedded in the cell surface. The filament is essentially a tube made up of 11 protofilaments arranged as a helical supercoil. By switching between left- and right-handed helical twists (the L and R states, respectively), a bacterium can switch between 'running' and 'tumbling' (reorientating) motions. In the 15 March Nature, a team led by Keiichi Namba of the Protonic NanoMachine Project and Matsushita Electric Industrial Company, Kyoto, Japan, provides an insight into how filaments are able to switch helical states (Nature 2001, 410:331-337).

Each protofilament contains thousands of copies of the protein flagellin, aligned one of top of another. Namba and colleagues crystallized the protein and analysed its structure at atomic (2Å) resolution. Flagellins of both the L and R...

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?
ADVERTISEMENT