Next Generation Biofactories

Courtesy James Weaver and Daniel Morse  These starburst structures of silica are produced as a rudimentary form of skeletal support by the sponge Tethya aurantia found in shallow waters off California. Yeast, diatoms, sponges: Already occupying mundane places in modern households, these organisms may yet inspire important new manufacturing developments. From minute and intricate computer chip components, to nanoscale gold-plated wires, to superior drug manufacturing capabilities, univers

Harvey Black
Jul 27, 2003
Courtesy James Weaver and Daniel Morse
 These starburst structures of silica are produced as a rudimentary form of skeletal support by the sponge Tethya aurantia found in shallow waters off California.

Yeast, diatoms, sponges: Already occupying mundane places in modern households, these organisms may yet inspire important new manufacturing developments. From minute and intricate computer chip components, to nanoscale gold-plated wires, to superior drug manufacturing capabilities, university researchers and companies are exploring ways to manipulate and harness these organisms' natural abilities.

"I really think this is intellectually challenging, to think of how you could build something with specific properties ... by taking advantage of what evolution has built into proteins. It's fascinating," says Susan Lindquist, director of the Whitehead Institute for Biomedical Research in Cambridge, Mass. "It forces you to think in ways you hadn't thought before." Lindquist made her comments at a conference featuring hers and others' work....

Interested in reading more?

The Scientist ARCHIVED CONTENT

ACCESS MORE THAN 30,000 ARTICLES ACROSS MANY TOPICS AND DISCIPLINES

Become a Member of

Receive full access to more than 35 years of archived stories, digital editions of The Scientist Magazine, and much more!
Already a member?