ADVERTISEMENT
ADVERTISEMENT

Research Notes

It once took several months, even years, to identify the role of a particular gene. Thanks to a breakthrough from researchers at the University of Utah in Salt Lake City, those months have been reduced to days. By removing transposons from Drosophila and then inserting and activating them in Caenorhabditis elegans, the group developed a new technique that will speed up gene identification (J.L. Bessereau et al., "Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line," N

Hal Cohen
It once took several months, even years, to identify the role of a particular gene. Thanks to a breakthrough from researchers at the University of Utah in Salt Lake City, those months have been reduced to days. By removing transposons from Drosophila and then inserting and activating them in Caenorhabditis elegans, the group developed a new technique that will speed up gene identification (J.L. Bessereau et al., "Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line," Nature, 413:70-8 Sept. 6, 2001.) A transposon, or "jumping gene" is a snippet of DNA that, when excised from its regular chromosomal location and activated by a transposase to help insertion, can randomly integrate itself elsewhere within the genome and mutate or "disrupt" another gene. Jumping genes that are tagged allow for the immediate identification of a mutant gene. Researchers used Mos1 because it doesn't require any additional factors for...

Interested in reading more?

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?
ADVERTISEMENT