Menu

Kyle Smith Shines a Light on Addiction

The Dartmouth College professor uses optogenetics to probe the neurological routes of habitual behavior.

Nov 1, 2017
Shawna Williams

© ROB STRONGWhen Kyle Smith was a kid, he didn’t like science. “I didn’t do very well” in the subject, he says. As an undergraduate at Indiana University, he initially saw himself going into film or television production, but he says the jump to psychology with a neuroscience bent wasn’t really such a big one. With film, “basically you start out with nothing, come up with an idea, figure out how to get it done, be creative, make it interesting to people. . . . push boundaries, [which] is exactly the same kind of thing I’ve found in science,” Smith says.

Smith was drawn to psychology partly by the problem of drug addiction. “Watching people go through that, it just hijacks the person in a sad but really fascinating way,” he says. As an undergraduate he studied at the University of Oxford, focusing on “the neuroscience side of psychology,” which further hooked him, so Smith became a graduate student in the lab of Kent Berridge at the University of Michigan.

Berridge’s group had previously found that ablating a region of the rodent brain called the ventral pallidum (VP) wiped out the animals’ reward response so completely that they stopped eating. To learn more about specific areas involved in the reward response, Smith used tiny syringes to inject neurotransmitter-mimicking chemicals into preimplanted tubes in the brains of awake rats, he says. The resulting changes in the rats’ behavior helped lead to the discovery of a particular area within the posterior VP—dubbed a “hot spot”—where the neurotransmitter mimics an enhanced reward response.1

Smith then delved into how that hot spot interacted with other areas of the brain. “What stood out about Kyle is that he was really dedicated to doing a scientific career, and he just threw himself into his projects with great energy and sort of swarmed over the literature, mastered the techniques, and then began to achieve results through a lot of hard work and talent—and did some beautiful, beautiful science,” says Berridge.

When it came time to apply for postdoc positions, Smith was intrigued by the work of MIT’s Ann Graybiel, who was using neural recording and other cutting-edge methods to decode habit formation in rodent brains. Working with her, Smith learned a new technique: optogenetics. “It developed into a very cool project where we were tracking changes in the brain as habits were formed,” he says.2

In 2013, Smith started his own lab at Dartmouth College, where he’s continued to study reward response, habit formation, and the VP. In one experiment, he and postdoc Steve Chang used optogenetics to disrupt VP function in rats that had been given a diuretic to make them salt-deficient. This VP impairment dampened the rats’ ability to associate environmental cues with salt rewards—though they still ate the salt when it was presented to them.3

Like Berridge, David Bucci, who heads Dartmouth’s Department of Psychological and Brain Sciences, says he has been impressed with Smith’s command of the literature and embrace of new technologies. “He wasn’t afraid to try new things and take a risk.”

And his background in the visual arts still comes in handy, Smith says: “[I] go kind of overboard with the PowerPoints that I wind up doing.” 

REFERENCES

1.    K.S. Smith, K.C. Berridge, “The ventral pallidum and hedonic reward: Neurochemical maps of sucrose ‘liking’ and food intake,” J Neurosci, 25:8637-49, 2005. (Cited 245 times)
2.    K.S. Smith, A.M. Graybiel, “A dual operator view of habitual behavior reflecting cortical and striatal dynamics,” Neuron, 79:361-74, 2013. (Cited 108 times)
3.    S.E. Chang et al., “Optogenetic inhibition of ventral pallidum neurons impairs context-driven salt seeking,” J Neurosci, 42:3105-16, 2015. (Cited 1 time)

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.