Six-Letter DNA Alphabet Produces Proteins in Cells

Transcription and translation of DNA containing synthetic base pairs becomes a reality in living cells.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ADAPTED FROM AN IMAGE BY DENNIS SUN, MEZARQUE DESIGNA synthetic base pair, first reported in 2014, can now not only replicate inside living cells, but also encode and produce proteins containing atypical amino acids, according to a report in Nature today (November 29). This proof-of-principle advance now sets the stage for biochemists to generate proteins with entirely novel forms and functions to those that can be created by natural organisms, say the authors.

“What a beautiful paper,” says chemical and biological engineer Michael Jewett of Northwestern University who was not involved in the study. “What’s so special about the work is that the authors have captured the entire information flow of the central dogma—information storage, retrieval, and, ultimately, translation into a functional output—using this expanded genetic alphabet.”

In all forms of life on earth, genetic information is composed of a four-letter alphabet—the nucleotides G, C, A, and T, which form the base pairs G-C and A-T. But three years ago, chemistry professor Floyd Romesberg of the Scripps Research Institute in California and colleagues extended this alphabet, reporting the creation of additional artificial nucleotides, X and Y, that could pair up within DNA and take part in replication within ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo