Tardigrade Protein Shields Mouse Cells from Radiation

Boosting cells with a tardigrade protein reduced DNA damage after radiation, offering potential protection for healthy tissue during cancer treatment.

Written byLaura Tran, PhD
Published Updated 3 min read
A close-up of a computer-generated tardigrade.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Tardigrades, or water bears, are microscopic animals with incredible survival skills—they can withstand extreme temperatures and the vacuum of space. They can also tolerate high doses of radiation. Researchers previously discovered that tardigrades can survive more than 1,000 times the lethal dose for humans.1 So, how do these tiny creatures protect themselves so well?

The answer lies in a damage-suppressing protein (Dsup) that binds to DNA and minimizes harmful strand breaks.2 Inspired by tardigrades' remarkable radiation tolerance, researchers explored whether this mechanism could help patients with cancer better tolerate radiation therapy.

To address this, a team of scientists from the Massachusetts Institute of Technology, Brigham and Women’s Hospital, and the University of Iowa packaged Dsup messenger RNA (mRNA) into nanoparticles. After injecting the nanoparticles into mice with oral cancer, the researchers found that tissue cells produced the therapeutic Dsup protein, which reduced radiation-induced damage. Their results, published in Nature Biomedical Engineering, present a promising approach to protect healthy tissue during radiation therapy.3

Radiation can harm surrounding healthy tissue, leading to injury and inflammation, but protective measures remain limited. The researchers hypothesized that delivering the protective tardigrade mRNA to tissues before radiation therapy could prompt cells to temporarily express Dsup, safeguarding DNA during treatment. Within hours, the mRNA and protein would degrade without integrating into the genome.

To optimize mRNA delivery, the team screened libraries of both polymer and lipid components for an effective vehicle. “We thought that perhaps by combining these two systems—polymers and lipids—we may be able to get the best of both worlds and get highly potent RNA delivery,” said Ameya Kirtane, a pharmaceutical scientist at the University of Minnesota and a study coauthor, in a press release.

First, the team tested whether their polymer-lipid nanoparticles could effectively deliver green fluorescent protein (GFP) mRNA to cells by injecting this into the buccal or rectal tissue of mice. They found that protein expression peaked six hours later and was mostly undetectable after 96 hours. The nanoparticles remained localized to the injection site, and both GFP and Dsup-GFP were expressed inside cells.

Next, they evaluated the effects of Dsup-carrying nanoparticles on oral and colonic cell lines after radiation exposure. The team used a marker for double-stranded DNA damage and found that the tardigrade mRNA treatment protected cells against radiation-induced damage.

The team then tested their Dsup delivery system in healthy mice. To maximize protein expression, they injected the treatment into the oral cavity of mice and exposed them to a single radiation dose six hours later. Mice that received Dsup treatment showed a reduction of double-stranded DNA damage. The researchers also checked for unintended systemic effects but found no significant changes in either suppressive or inflammatory cytokine levels.

To study their treatment in a disease model, the researchers introduced oral squamous cell carcinoma cells into one side of a mouse’s cheeks. Once the tumors grew to roughly 50mm3, the researchers then injected Dsup treatment into the opposite cheek before exposing the tumor to radiation. DNA damage measurements showed the same trend seen in healthy mice: Dsup treatment significantly reduced radiation-induced DNA damage while remaining localized near the injection site. Notably, the mRNA treatment also did not influence tumor growth before radiation. This delivery system is proof of concept that a Dsup-based therapy may protect healthy tissues during radiation therapy.

“This is an entirely novel approach for protecting healthy tissue and may eventually offer a way to optimize radiation therapy for patients while minimizing these debilitating side effects,” said James Byrne, a physician-scientist at the University of Iowa and study coauthor, in a press release.

Harnessing the protective powers of this unique tardigrade protein paves the way for future development in treatments to safeguard against DNA damage caused by radiation, chemotherapy drugs, and even space travel.

Related Topics

Meet the Author

  • Laura Tran, PhD

    Laura Tran is an Assistant Editor at The Scientist. She has a background in microbiology. Laura earned her PhD in integrated biomedical sciences from Rush University, studying how circadian rhythms and alcohol impact the gut. While completing her studies, she wrote for the Chicago Council on Science and Technology and participated in ComSciCon Chicago in 2022. In 2023, Laura became a science communication fellow with OMSI, continuing her passion for accessible science storytelling.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research