Taking It Higher

Nuclear Magnetic Resonance (NMR) spectroscopy has become an extremely familiar analytical tool in chemistry and biochemistry laboratories. Even researchers with little exposure to the technique recognize that NMR can provide a great deal of information about everything from the acetone content of a poorly prepared undergraduate chemistry lab sample to the structure and dynamics of complex biomolecules. In recent years the analytical potential of NMR has expanded, offering researchers a growing a

Aileen Constans
Oct 29, 2000

Nuclear Magnetic Resonance (NMR) spectroscopy has become an extremely familiar analytical tool in chemistry and biochemistry laboratories. Even researchers with little exposure to the technique recognize that NMR can provide a great deal of information about everything from the acetone content of a poorly prepared undergraduate chemistry lab sample to the structure and dynamics of complex biomolecules. In recent years the analytical potential of NMR has expanded, offering researchers a growing arsenal of experiments for both solution and solid state applications. Most recently, NMR has entered the arena of high-throughput screening, providing new methods for drug discovery and structural genomics research.

For a technique that offers such complex information, the basic principles behind NMR are straightforward. The nuclei of certain atoms, for example, 1H, 13C, and 15N, exhibit a physical property known as spin. These nuclei can be viewed as tiny magnets that, when placed in an...