Painting Genes in Parallel

Courtesy of Tecan Group Knowledge of the tissues and cells that express particular genes is key to understanding gene function. In situ hybridization (ISH), a popular method for deciphering gene expression, is a slow, labor-intensive, error-prone operation that limits parallel investigation of multiple genes and tissues to what may be carried out quickly by hand. These attributes essentially preclude slide-staining efforts from the high-throughput analyses that are so critical to functional ge

Angelo DePalma
Jun 15, 2003
Courtesy of Tecan Group

Knowledge of the tissues and cells that express particular genes is key to understanding gene function. In situ hybridization (ISH), a popular method for deciphering gene expression, is a slow, labor-intensive, error-prone operation that limits parallel investigation of multiple genes and tissues to what may be carried out quickly by hand. These attributes essentially preclude slide-staining efforts from the high-throughput analyses that are so critical to functional genomics research. But a new system from Tecan Group, Männedorf, Switzerland, could change all that.

Based on an established pipetting robot platform, GenePaint--invented by Gregor Eichele of the Max Planck Institute of Experimental Endocrinology, Hannover, Germany--delivers high-throughput performance for ISH, fluorescence ISH (FISH), and immunohistochemistry. The system's automated flexibility eliminates 80% of the manual steps of conventional ISH by performing all fixing, staining, washing, and hybridization operations in a temperature-controlled environment. It also integrates specialized reagent kits familiar to...

Interested in reading more?

Magaizne Cover

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?