The Eye of the Finch

Beaks did it for Darwin. Now, monitoring real-time evolution of bacteria that infects finch eyes reveals repeated, rapid evolution of an emerging avian pathogen in backyards throughout the U.S.

Written byAndrew Dobson
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

© GARY W. CARTER/CORBISEvolution is supposed to occur slowly. But pathogens play by a different set of rules. Novel strains of bacteria and viruses can appear suddenly, or even jump from one host species to another to cause a disease outbreak, as is currently happening in China with an H7N9 strain of influenza virus. A central question in the study of emerging disease is whether novel pathogens will become more or less virulent toward their hosts the more time they spend with them. According to a new study from our group and others, at least one newly emerging pathogen—the bacterium Mycoplasma gallisepticum, or MG to those that study it—does both.

Our study, just published in PLOS Biology (11:e1001570, 2013), shows that MG, which affects the eyes of finches found in backyards across most of the United States, has rapidly and repeatedly evolved to become both more and less harmful to its songbird hosts. The complementary results reflect the different selective forces on the pathogen that occur as it spreads. In each case, the pathogen evolves to change the rate at which it kills its host in order to maximize the likelihood of infecting new hosts. The research provides some of the first clues suggesting that pathogen evolution can happen very rapidly, repeatedly, and also reversibly: under some conditions, the pathogen evolves to kill hosts more rapidly, while under others, virulence is attenuated.

The research provides ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems