Menu

A Newly Identified Photoenzyme Helps Algae Pump Out Fuel

The finding could lead to a new way of producing “green” alternatives to fossil fuels.

Feb 1, 2018
Katarina Zimmer

GREEN MACHINES: One species of Chlorella algae uses a photoenzyme to convert fatty acids into fossil fuel–like hydrocarbons.LAURENCE GODART

EDITOR'S CHOICE IN CELL & MOLECULAR BIOLOGY

The paper
D. Sorigué et al., “An algal photoenzyme converts fatty acids to hydrocarbons,” Science, 357:903-907, 2017.

Green Fuel
Finding enzymes in nature that convert plant oils into fossil fuel–like hydrocarbons could lead the way toward harnessing new energy sources. After observing that the freshwater alga Chlorella variabilis can convert fatty acids into alkanes or alkenes, a team of researchers from France decided to investigate how it accomplished this feat.

Fatty Acid Engine
The researchers’ assay detected a particularly abundant hydrocarbon-forming enzyme that appears to be located in C. variabilis’s chloroplast membrane, says study leader Frédéric Beisson, who researches algae metabolism at the Institute of Biosciences and Biotechnologies at Aix-Marseille University. So they expressed the protein in E. coli to test its function, and used mass spectrometry to get a close look at its mechanism of action. The enzyme turned out to be capable of converting a range of fatty acid substrates into hydrocarbon chains, but only under blue light.

A Rare Find
The researchers were surprised to find that the new enzyme, dubbed fatty acid photodecarboxylase, captures energy directly from light, in contrast to enzymes whose expression is regulated by light. “It wasn’t something we were expecting,” remarks Beisson. Additionally, unlike enzymes that need just a flash of light to become active, the new enzyme only works under continuous light, making it an addition to a mere handful of known “photoenzymes.”

Getting Into Gear
The production of hydrocarbons is a well-studied process in algae, Günther Knör, a chemist at Johannes Kepler University in Austria, writes to The Scientist in an email. But he thinks that photoenzymes could be used to more efficiently produce hydrocarbons in light-driven artificial systems in the near future: “This would be a breakthrough for solar fuel generation inspired by nature.”

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Application of TruBIOME™ to Increase Mouse Model Reproducibility
Application of TruBIOME™ to Increase Mouse Model Reproducibility
With this application note from Taconic, learn about the effects of the microbiome on reproducibility and predictability and how TruBIOME™ helps researchers generate custom microbiota mouse models!
Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.