Menu

Distantly Related Conifers Share a Surprising Number of Cold-Tolerance Genes

Spruce and pine and have relied on similar genetic toolkits for climate adaptation despite millions of years of evolution.

Dec 1, 2016
Ben Andrew Henry

Snowed In: Spruce and pine parted evolutionary ways long ago, but their cold-adaptation genes are surprisingly similar. SALLY AITKEN

EDITOR'S CHOICE IN EVOLUTION

The Paper
S. Yeaman et al., “Convergent local adaptation to climate in distantly related conifers,” Science, 353:1431-33, 2016.

Family Trees
Related species sometimes adapt to similar environments with mutations in the same genes. But convergent evolution is usually observed in species that recently diverged or in traits that involve only a few genes and therefore may have fewer possible evolutionary paths. New research from the snowy North tells a different story.

Winter Specialists
Interior spruces (Picea glauca and P. engelmannii) and lodgepole pine (Pinus contorta) each have hundreds of genes that contribute to one outcome: surviving the brutal winters of Canada and the northern U.S. “You would think that there would be many ways to get the same phenotype” with so many genes involved, says Sally Aitken, a population geneticist at the University of British Columbia. And yet, the two conifer groups share 10 percent to 18 percent of their cold-adaptation genes, Aitken and her colleagues report in a recent study.

Cold Convergence
These species diverged when the Earth’s climate was warmer, around 140 million years ago—leaving plenty of time to evolve unique genes. Although different variants of those genes arose in each species, evolution appears to have put them to use in the same way. The study suggests evolution “is repeatable even though these trees diverged so, so long ago,” says Patrik Nosil, an evolutionary biologist at the University of Sheffield in the U.K.

Frozen in Time
One possible explanation, Aitken says, is that the strong selective pressure of the climate constrained the emergence of new genes, forcing these species to rely on variants of old genes.

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.