Menu

Extra Centrosomes Can Drive Tumor Formation in Mice

Mice engineered to overproduce the organelles involved in cell division spontaneously develop malignancies.

Apr 1, 2017
Diana Kwon

OVERCROWDED: A cell with too many centrosomes (each with two centrioles; green), extra mitotic spindles (red), and abnormally segregated DNA (blue)BRAMWELL LAMBRUS, HOLLAND LAB

EDITOR'S CHOICE IN CANCER BIOLOGY

The paper
M.S. Levine et al., “Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals,” Dev Cell, 40:313-22, 2017.

Three’s a crowd
More than a century ago, the German biologist Theodor Boveri observed that cancer cells often had extra centrosomes, organelles essential for the segregation of chromosomes during mitosis. This raised a question that scientists have since puzzled over for decades:
Is centrosome amplification a cause or effect of cancer?

See "A Cellar's Cellular Treasure"

Chicken or egg
In 2008, researchers found the first compelling evidence that extra centrosomes could drive tumor formation in flies. However, subsequent studies in mice failed to replicate the results, leading some to question the universality of extra centrosomes’ effects.

Master regulator
In the latest study to investigate this link, Andrew Holland, a cancer researcher at Johns Hopkins University School of Medicine, and his colleagues genetically engineered mice to overexpress Polo-like kinase 4 (Plk4), the “master regulator” of centrosome copy number. They found that once the mice were around eight months old, they began to develop a variety of tumors, including lymphomas and sarcomas. This study is “an important, clear piece of evidence for a long-standing idea,” says David Pellman, a cell biologist at Harvard Medical School. Still, how much “chromosome segregation errors versus other effects of centrosome amplification [drives tumorigenesis] remains poorly understood.”

Sweet spots
Holland said he thinks his team’s experiment succeeded because they were able to reach the “sweet spot of instability,” given that too many centrosomes can be lethal. “It’s nice now that both fly and mouse show that if you amplify centrosomes you can promote tumorigenesis,” says the University of Oxford’s Jordan Raff, a coauthor of the 2008 study, “but it’s still not very clear how important that is for human cancers.”

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing