Menu

Grading on the Curve

Actin filaments respond to pressure by forming branches at their curviest spots, helping resist the push.

Jun 1, 2012
Edyta Zielinska

EDITOR'S CHOICE IN DEVELOPMENTAL BIOLOGY

When a cell hits an obstacle, the actin filaments driving the membrane protrusion must reorganize and create additional branches to resist the pressure. Dan Fletcher at the University of California, Berkeley, and colleagues wanted to understand what effect that force has on the branching of actin filaments. They first glued unbranched actin filaments to a surface, some curved, some straight, and then added the raw materials necessary for the branching: the branch-initiating complex Arp2/3, the nucleation-promoting factor that activates it, and raw actin monomers, which polymerize into two tightly wound strands under the right conditions.

The researchers found that new actin branches were more likely to form on the convex side, or outer side, of curved segments. The questions were why and how the branching was occurring mostly on that side, says Fletcher. He recalled early studies on actin in which researchers noticed that isolated filaments would wiggle and squirm without the addition of any external energy. Though it was impossible to detect the wiggling at the scale of the isolated branching proteins under a microscope, Fletcher and colleagues wondered if the actin fragments they had immobilized still retained their wiggle, creating momentary curvature in certain areas and generating more branching. To test the idea, the team created a mathematical model to predict actin wiggling, and hypothesized that Arp2/3 would only bind when the curvature of the filament was greater than a certain value, and then imposed all the constraints of the experiment: the glue that held a filament down, the addition of Arp2/3, and the overabundance of raw actin proteins. The model fit.

When people think of mechanotransduction, they usually think of adhesion proteins, says Fletcher. But this study shows that “actin itself can be a sensor of its physical state,” and that the “structure that’s bearing the load may help organize the cell.” The results additionally hint at the possibility that some of the other 100 or so actin-binding proteins may also be regulated in part by the curvature of the strand. Curvature may turn out to be a “general mechanism for signaling during migration or other mechanotransduction processes,” says Harvard Medical School’s Jessica Tytell, who was not involved in the research.

The paper

V.I. Risca et al., “Actin filament curvature biases branching direction,” PNAS, 109:2913-18, 2012.

July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 today, which includes a broad range of improvements in for analysis of DNA, RNA and protein sequence data, as well as new advancements for predicting and analyzing protein structures. 
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences, a division of Chiral Technologies, Inc and worldwide leader in next generation sequencing (NGS) target enrichment, announces a partnership with Curio Genomics for bioinformatics analysis of the wheat genome.
IDT and Washington University join forces to increase access to the latest NGS technologies
IDT and Washington University join forces to increase access to the latest NGS technologies
As part of its commitment to advocate for the genomics age, Integrated DNA Technologies (IDT) aims to lower the barriers to access the latest NGS technologies.
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) July 15, 2019 announced the launch of its Bio-Plex Pro Human Immunotherapy Panel 20-plex, a multiplex immunoassay that offers a targeted approach for Immunotherapy Research.