Kissing Cousins

Researchers discover a completely novel mechanism of cell signaling involving soluble chemokines and their transmembrane equivalents.

May 1, 2016
Catherine Offord

A NEW WAY TO TALK: In classical signaling, receptors (blue) on a target cell transduce an intracellular signal upon binding with transmembrane or soluble ligands, such as chemokines (green; 1), which can originate in another cell or the target cell itself. Signaling triggered by a transmembrane ligand binding to a receptor on another cell is known as reverse signaling (2). In a novel mechanism dubbed inverse signaling, a transmembrane chemokine transduces a signal upon binding with its soluble equivalent (3).THE SCIENTIST STAFF


K. Hattermann et al., “Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling,” eLife, 5:e10820, 2016.

Kirsten Hattermann knows a thing or two about chemokines. A researcher working with Janka Held-Feindt’s lab at the University of Kiel in Germany, Hattermann has spent the last decade studying these little proteins, which bind—either as transmembrane (tm) proteins or as soluble (s) equivalents that are shed from the membrane or secreted by the cell—to complementary receptors on target cells. Binding of the s-chemokines can elicit several responses in target cells, including cell migration and proliferation, but scientists are still working out the consequences of tm-chemokine binding.

Recently, while investigating chemokine signaling in tumor cells from a variety of human cancers, Hattermann and her colleagues found something they couldn’t explain. When they exposed glioma and carcinoma cells lacking known chemokine receptors to the soluble form of the chemokines CXCL16 and fractalkine, the researchers assumed there would be no binding and, hence, no signal transduction. But to their surprise, Hattermann says, “we observed intracellular signaling.”

Because “it is known that chemokines are receptor-promiscuous,” explains Hattermann, “at first we were searching for another receptor.”

But after noticing that a line of receptor-negative melanoma cells didn’t respond to the s-chemokines, the team began looking for differences in membrane protein composition between these cells and the responsive ones. “These [melanoma] cells lacked transmembrane chemokines,” Hattermann says. “That was the first hint that the transmembrane chemokines might be critical.”

Using immuno-electron microscopy, the researchers showed that s-CXCL16 and s-fractalkine directly bind to their transmembrane equivalents, implicating tm-chemokines as the elusive signal transducers. “If it’s correct, it’s paradigm-shifting in terms of the way we understand how some of these molecules work,” says Gerry Graham, a professor of molecular and structural immunology at the University of Glasgow. “Binding of a soluble [chemokine] to a membrane-anchored one to transduce a signal is completely new.”

Transfecting the melanoma cells with tm-CXCL16 and tm-fractalkine partly activated s-chemokine signal transduction, the researchers found, while silencing the tm-chemokines in otherwise responsive, receptor-negative tumor cells abolished the effect. This novel mode of communication, which the team has termed “inverse signaling,” may fine-tune classical signaling mechanisms, Hattermann suggests.

Graham says more experiments, both in vitro and in vivo, will be essential. “I think there’s a lot to be done in terms of defining [the mechanism’s] breadth of applicability,” he says. “Chemokines will dimerize with themselves, but also [with] other chemokines. Do you get similar signaling if you take another chemokine and attach it to these transmembrane chemokines?”

The team aims to explore this and related questions, Hattermann says, including whether other transmembrane ligands, such as tumor necrosis factors and ephrins, use similar mechanisms. The researchers also plan to investigate the prevalence of inverse signaling outside cancer, for example, during development. “We have some hints that it’s not restricted to malignant tumor cells,” Hattermann notes.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb


Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!