Menu

Neural Network Found That Helps Control Breathing

The results suggest that breathing is orchestrated by three—rather than two—excitatory circuits in the medulla.

Nov 1, 2016
Catherine Offord

THREE-PART RHYTHM: There are three stages to mammalian breathing: inspiration, passive expiration (postinspiration), and active expiration—a conditional phase used during labored breathing. Inspiration and active expiration have been linked to rhythm-generating excitatory neural circuits in the medulla: the pre-Bötzinger complex and the lateral parafacial region, respectively. A recent study has revealed a third excitatory network—the postinspiratory complex (PiCo)—that drives postinspiration, suggesting that the coordination of breathing may rely on alternating inhibitory interactions between three networks. © SHRADDHA NAYAK

EDITOR’S CHOICE IN NEUROSCIENCE

The paper
T.M. Anderson et al., “A novel excitatory circuit for the control of breathing,” Nature, 536:76-80, 2016.

A lot can happen after we take a breath—from swallowing a sip of coffee to singing in the shower—and the nervous system has to coordinate all these behaviors without sending fluids into the lungs or disrupting airflow. But studying the neural control of breathing has been a challenge, not least because researchers haven’t found all the circuitry involved.

Two breathing phases, inspiration and active expiration (the forced expulsion of air during labored breathing), have each been linked to rhythm-generating excitatory networks in the medulla, the lowest portion of the brainstem. But scientists have been stumped as to the source of excitation generating the third: the passive release of air from the lungs after breathing in, or postinspiration. From this incomplete picture, most models of breathing have assumed that just two rhythm-generating circuits—inspiratory and expiratory—set the timing of all three breathing phases, with coordination coming about as each active phase inhibits the other two.

Jan-Marino Ramirez, a neuroscientist at the University of Washington, has spent much of his career working to refine this model. Over the last decade, he and his colleagues have developed a preparation of horizontal brain slices from baby mice that provides a broad in vitro view of neural activity in the medulla. Using this preparation, the team has finally discovered the excitatory network that generates postinspiration, which the group has named the postinspiratory complex (PiCo).

After so many years of unsuccessful searching, “I thought, ‘Oh, maybe it’s something else,’” Ramirez remarks about initially finding the PiCo. “But then we started the research—isolating this area and showing it’s an independent neural network.”

Through pharmacological and optogenetic experiments, the researchers demonstrated that the PiCo is necessary and sufficient to generate postinspiration in vitro and in adult transgenic mice. What’s more, like the networks driving inspiration and active expiration, the PiCo appears to generate its own rhythm. “That was astonishing to us,” Ramirez says. The team is now exploring a model of breathing coordinated by the interactions of three, not two, rhythm-generating excitatory networks.

“There are a number of seminal results presented here,” says neurobiologist Jeffrey Smith of the National Institute of Neurological Disorders and Stroke who was not involved in the work. He adds that the experiments themselves were “technically sophisticated and involved a variety of elegant approaches,” but that the network’s architecture and activity in vivo will require further investigation.

Ramirez plans to examine the PiCo’s influence on actions occurring during postinspiration. “Can we interrupt vocalization, for example, or swallowing?” Such experiments might explain what happens when the coordination of breathing goes wrong—a common problem that leads to aspiration pneumonia in people with certain neurodegenerative diseases. It could also open a window on how and why we coordinate certain other behaviors, such as the holding of breath during concentration, Ramirez notes. “I think these circuits will allow us to probe higher brain functions,” he says, “which I find very, very exciting.” 

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing
Bio-Rad Introduces Isotype-Specific Secondary Antibodies
Bio-Rad Introduces Isotype-Specific Secondary Antibodies
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of its isotype-specific secondary antibodies. This new range of recombinant monoclonal antibodies, directed against the three main mouse isotypes: IgG1, IgG2a, and IgG2b, offer improved signal detection and specificity in imaging, ELISA, flow cytometry, and western blotting.