Menu

Newly Found White Blood Cell Withstands Chemotherapy

Vaccine-induced macrophages open a new realm of study into remodeling the immune system to reduce the risk of infections during cancer treatment.

Jan 1, 2017
Ben Andrew Henry

LAST ONES STANDING: Unlike other immune cells, these vaccine-induced macrophages from a mouse’s lung manage to withstand chemotherapy treatment. ST. JUDE CHILDREN'S RESEARCH HOSPITAL

EDITOR'S CHOICE IN IMMUNOLOGY

The paper
A. Kamei et al., “Exogenous remodeling of lung resident macrophages protects against infectious consequences of bone marrow-suppressive chemotherapy,” PNAS, doi:10.1073/pnas.1607787113, 2016.

Bloodletting
Chemotherapy wipes out cancerous cells and dividing normal cells alike, often particularly damaging those in bone marrow that produce white blood cells. As a patient’s immune system is weakened, even minor infections can become life-threatening. Researchers are exploring ways to circumvent this problem by “remodeling” the immune system prior to chemotherapy.

Below the radar
Akinobu Kamei of St. Jude Children’s Research Hospital and his colleagues identified a class of white blood cell that only becomes active in the lungs of mice following vaccination for a common bacterial strain that causes pneumonia. Like some other immune cells in the lungs, these so-called vaccine-induced macrophages, or ViMs, do not originate in bone marrow, but reside solely in the lungs, likely having derived from progenitor cells in the lungs during embryogenesis.

Survivors
The St. Jude team found that ViMs are not decimated by chemotherapy like other immune cells—in fact, their numbers don’t dip at all. It’s not clear how ViMs manage this feat, says Kamei, but mice that were vaccinated before chemotherapy, triggering ViMs, survived bacterial infections at much higher rates than unvaccinated mice.

Outlook
“The future plan,” says Kamei, “is to induce lung tissue [immune] remodeling to compensate for bone marrow suppression after chemotherapy.” Immunology researcher Sandro Vento of Nazarbayev University in Kazakhstan pointed out in an email to The Scientist that the animal-model work is only preliminary. “This is an initial study which opens a new area of research, and it will be important to understand the mechanisms which allow vaccine-induced macrophages to survive chemotherapy.”

July 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

Overcoming the Efficiency Challenge in Clinical NGS
Overcoming the Efficiency Challenge in Clinical NGS
Download this white paper to see how an ECS lab serving a network of more than 10,000 healthcare providers integrated QIAGEN Clinical Insight (QCI) Interpret to significantly reduce manual variant curation efforts and increase workflow efficiency by 80%!
Veravas Launches Product Portfolio to Mitigate Biotin Interference and Improve Diagnostic Assay Accuracy
Veravas Launches Product Portfolio to Mitigate Biotin Interference and Improve Diagnostic Assay Accuracy
Veravas, Inc., an emerging diagnostic company, launched a portfolio of products that can improve the accuracy of current diagnostic test results by helping laboratory professionals detect and manage biotin interference in patient samples with VeraTest Biotin and VeraPrep Biotin.
New Data on Circulating Tumor DNA as a Biomarker for Detecting Cancer Progression Presented at 2019 ASCO Annual Meeting
New Data on Circulating Tumor DNA as a Biomarker for Detecting Cancer Progression Presented at 2019 ASCO Annual Meeting
Scientists presented more than 30 abstracts featuring Bio-Rad’s Droplet Digital PCR (ddPCR) technology at the American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, May 31–June 4.
BellBrook Labs Receives NIH Grant for the Discovery of cGAS Inhibitors to Treat Autoimmune Diseases
BellBrook Labs Receives NIH Grant for the Discovery of cGAS Inhibitors to Treat Autoimmune Diseases
The National Institute Of Allergy And Infectious Disease recently awarded BellBrook Labs a $300,000 Small Business Innovative Research (SBIR) grant to develop novel inhibitors for the target cyclic GAMP Synthase (cGAS). The grant will be used to accelerate the discovery of new treatments for autoimmune diseases by targeting the cGAS-STING pathway.