Menu

Researchers Uncover Previously Unknown Immune Cell Subtypes

Using single-cell RNA sequencing, scientists characterize new populations of dendritic cells and monocytes.

Jul 17, 2017
Aggie Mika

DISTINCTLY DIFFERENT: A newly discovered type of dendritic cell (left) exhibits notable differences from a standard plasmacytoid dendritic cell (right).3-D RECONSTRUCTION BY JAMES FLETCHER, IMAGE COURTESY OF KATHRYN WHITE, NEWCASTLE UNIVERSITY

EDITOR'S CHOICE IN IMMUNOLOGY

The paper
A.-C. Villani et al., “Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors,” Science, 356:eaah4573, 2017.

Hiding, not seeking
Dendritic cells and monocytes, essential pathogen-sensing immune watchdogs, fall into subtypes based on factors such as cell surface markers. But according to genomicist and immunologist Alexandra-Chloé Villani of the Broad Institute of MIT and Harvard, scientists only “use a handful of markers to define their favorite cell type,” potentially overlooking subpopulations with similar features but different functions.

New cell types
To redefine traditional cell subtypes, Villani and her colleagues isolated human dendritic cells and monocytes, sequenced the transcriptomes of individual cells, then grouped cells based on similar expression patterns. They then identified cell-surface markers that were highly and specifically expressed in each group, uncovering two new monocyte and three new dendritic cell subtypes along with a novel dendritic cell progenitor. Using their new markers, researchers isolated and resequenced fresh dendritic cells to confirm their results.

Jackpot
Among the newly characterized subtypes was a cell that had previously “hidden” among plasmacytoid dendritic cells (pDCs), known for producing interferons in response to viral invaders. Testing the functions of this new population, the team found that the cells potently activated T cells, while pDCs, on their own, did not.

A better approach?
“Single-cell transcriptomics methods are developing rapidly to become more scalable, robust, reliable, and affordable,” the Sanger Institute’s Sarah Teichmann, who was not involved in the work, told The Scientist in an email. This technology, Teichmann says, “is the method of choice” for studying cell type in immunology and beyond.

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing