“Rogue” Protein Could Contribute to Humans’ High Cancer Rates

A mutant protein called Siglec-XII may promote carcinoma progression in humans, but inactivation of its gene seems to avoid the problem, according to a study.

Written byAsher Jones
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: A tissue section from a prostate cancer patient who produces Siglec-XII (stained brown), which is much more highly expressed in malignant cells than normal cells.
FASEB BIOADVANCES, DOI:10.1096/FBA.2020-00092, 2020

The paper
S.S. Siddiqui et al., “Human-specific polymorphic pseudogenization of SIGLEC12 protects against advanced cancer progression,” FASEB BioAdvances, 3:69–82, 2021.

Among a group of cell surface proteins known as sialic-acid-binding immunoglobulin-like lectins (Siglecs), CD33-related Siglecs are found mainly on innate immune cells and are involved in cell signaling. One Siglec, however, appears to have “gone rogue” in humans, according to Ajit and Nissi Varki, a husband-and-wife team at the UC San Diego School of Medicine.

Siglec-XII, encoded by the gene SIGLEC12, no longer binds sialic acid and seems to be involved in abnormal cell signaling in humans, the researchers report. The Varkis argue that the protein plays a role in cancer progression and could help explain why humans have much higher ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

April 2021

Advancing Against Metastasis

Cancer cells can spread early and lie dormant for years

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas