Menu

A Blood-based Biomarker for Suicide?

Epigenetic and genetic changes in the SKA2 gene are correlated with suicidal behaviors, researchers show.

Jul 31, 2014
Jyoti Madhusoodanan

FLICKR, US NAVYA blood test that reveals epigenetic and gene-expression changes in one gene, SKA2, could help identify individuals at risk of suicide or suicidal behaviors, according to a study published yesterday (July 30) in The American Journal of Psychiatry.

Led by Zachary Kaminsky of the Johns Hopkins University School of Medicine in Baltimore, Maryland, the study began with a genome-wide scan for methylation changes in neurons and glial cells in post-mortem brains to identify genes associated with suicide. The search linked epigenetic and genetic changes in a single nucleotide polymorphism (SNP), rs7208505, within the SKA2 gene to a higher probability of suicidal ideation. SKA2 gene expression was significantly lower in suicide decedents, an effect linked to variations in this SNP.

Changes in SKA2 expression were also linked to suicidal behaviors in blood tests on three live cohorts. An assessment of stress—as measured by salivary cortisol levels—suggested that the gene may act to suppress cortisol and mediate stress responses. The correlation of SKA2 with anxiety and stress could potentially “explain about 80 percent of suicidal behavior, and progression from suicidal ideation to suicide attempts,” the authors wrote in their paper.

SKA2 has been implicated as important for the normal function of stress receptors,” Kaminsky told Popular Science. “It chaperones them, and it goes up when glucocorticoid binds to these receptors, which happens when you get stressed out.”

Previous searches for blood biomarkers of suicidal thoughts have yielded other potential genes. The Scientist reported last year that researchers had identified six candidate biomarkers for suicidal thoughts, in genes related to stress and cell death. Although a simple blood test to predict an individual’s potential for suicidal thoughts could benefit the community, biomarkers for self-harm have yet to reach clinical trials. 

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.